Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC

a,Có:\(\Delta ABC\)vuông tại A (gt)
\(\Rightarrow AB^2+AC^2=BC^2\)(Định lí Py-ta-go)
Mà AB=2cm;BC=4cm(gt)
Suy ra:\(2^2+AC^2=4^2\)
\(AC^2=8-4\)
\(AC^2=4\)
\(AC=\sqrt{4}\)
AC=2
Vậy ...
b,

Nhiều thế.
Bài 1:
B C A
Xét \(\Delta ABC\)có \(AB=AC\)
\(\Rightarrow\Delta ABC\)cân tại \(A\)
\(\Rightarrow\widehat{B}=\widehat{C}=70\)độ
\(\Rightarrow\widehat{A}=180-70-70\)
\(\Rightarrow\widehat{A}=40\)độ
(Mình làm hơi nhanh khúc tính nhé tại đang bận!)
Tiếp nè: Bài 2
A B C H
Bạn xét 2 lần pytago là ra nhé. Lần 1 với \(\Delta AHC\). Lần 2 với \(\Delta AHB\). Thế là xong 2 câu a,b
Bài 3:
B A C H
a) Ta có \(\Delta ABC\)cân tại \(A\)
\(\Rightarrow AH\)vừa là đường cao vừa là trung tuyến
\(\Rightarrow HB=HC\)
b) Câu này không có yêu cầu.
c + d: Biết là \(\widehat{HDE}=90\)và \(\Delta HDE\)nhưng không nghĩ ra cách làm :(

hình bạn vẽ jum mik nha! Còn giờ mik giải bài
a) Xét \(\Delta\)vuông ABH và \(\Delta\)vuông AEH có:
AH: cạnh chung
góc BAH= góc EAH (do AH là đường phân giác của tam giác ABC)
Do đó: \(\Delta\)ABH=\(\Delta\)AEH (cgv-gn)
b) Vì \(\Delta\)ABH= \(\Delta\)AEH (cmt)
=> AB=AE (2 cạnh tương ứng)
Xét \(\Delta\)ABM và\(\Delta\)AEM có:
AB= AE (cmt)
góc BAM= góc EAM ( do AM là đường phân giác của tam giác ABC)
AM: cạnh chung
Do đó: \(\Delta\)ABM=\(\Delta\)AEM ( c.g.c)
=> góc ABM= góc AEM=90 độ
=> ME vuông góc với AC
c) Vì \(\Delta\)ABM= \(\Delta\)AEM (cmt)
=> BM=EM=3 cm
Ta có: \(\Delta\)MEC vuông tại E
Theo định lí Py-ta-go , ta có:
MC\(^2\)= ME\(^2\)+EC\(^2\)
EC\(^2\)= MC\(^2\)- ME\(^2\)
EC\(^2\)= 5\(^2\)- 3\(^2\)=25-9=16
EC = \(\sqrt{16}\)=4 cm
d) Ta có : tam giác ABC vuông tại B
=> góc C+ góc BAC = 90 độ
30 độ + góc BAC = 90 độ
góc BAC= 90 độ -30 độ = 60 độ
Xét tam giác ABE có AB=AE và góc BAC = 60 độ
=> tam giác ABE đều
=> góc BAE= góc ABE= góc AEB= 60 độ
Ta có: góc BAE+ góc EBC= 90 độ
góc BAE + góc C =90 độ
=> góc EBC = góc C
=> tam giác BEC cân tại E
Câu 1:
+ Xét \(\Delta IKH\) vuông tại \(I\left(gt\right)\) có:
\(HK^2=IK^2+IH^2\) (định lí Py - ta - go).
=> \(HK^2=2^2+3^2\)
=> \(HK^2=4+9\)
=> \(HK^2=13\)
=> \(HK=\sqrt{13}\left(cm\right)\) (vì \(HK>0\)).
Vậy \(HK=\sqrt{13}\left(cm\right).\)
Câu 2:
Tam giác cân có một góc bằng \(60^0\) thì tam giác đó là tam giác đều.
Chúc bạn học tốt!
Câu 3: Khẳng định đúng là: ( a ), ( b ), ( c )
Chúc bạn may mắn !