Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D E K F
a, K;F là trung điểm của BD; BC (gt)
=> FK là đtb của tg BDC
=> FK // DC
mà DC // AB do ABCD là hình thang
=> FK//AB
b, K;E là trung điểm của BD; AD => KE là đtb của tg ABD
=> KE = 1/2 AB VÀ KE // AB
có AB = 4
=> ke = 2 cm
c, có KE // AB mà KF // AB
=> E;K;F thẳng hàng (tiên đề ơ clit)

160 độ - NOQ = ?
Mình chỉ biết thế thôi !
Bởi vì năm nay mình mới lên lớp 5 mà hihihi ;;;; nháy mắt
o P M Q N
vì MN x PQ tại O nên \(\widehat{MOP}\)và \(\widehat{NOQ}\)là hai góc đối đỉnh (gt)
=> \(\widehat{MOP}=\widehat{NOQ}=\frac{160^0}{2}=80^0\)
p/s: đây là mk tự nghĩ -> tự làm, ok nếu sai cấm trách ko ns trc!

Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)
\(\Rightarrow ad+cd< bc+dc\)
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) (1)
\(ad< bc\)
\(\Rightarrow ad+ab< bc+ab\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (2)
Từ (1), (2) \(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\left(đpcm\right)\)
Ta có :
\(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)
\(\Rightarrow ad+ab< bc+ab\Rightarrow a\left(d+b\right)< b\left(c+a\right)\)
\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(1\right)\)
Lại có :
\(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\rightarrowđpcm\)

a) Tính số đo các góc BOD, DOE, COE
Dựa vào các số đo đã cho:
- ∠BOC = 42°
- ∠AOD = 97°
- ∠AOE = 56°
Giả sử các tia nằm trên cùng một mặt phẳng và theo thứ tự: B → O → C → D → E → A
Tính từng góc:
- ∠BOD = ∠AOD − ∠BOC = 97° − 42° = 55°
- ∠DOE = ∠AOE − ∠AOD = 56° − 97° = −41° → không hợp lý
→ Vậy ta lấy: ∠DOE = ∠AOD − ∠AOE = 97° − 56° = 41° - ∠COE = ∠BOD + ∠DOE = 55° + 41° = 96°
- b) Tia OD có phải là phân giác của góc COE không?
- Phân giác là tia chia góc thành hai phần bằng nhau.
- ∠COE = 96°, mà ∠BOD = 55°, ∠DOE = 41°
- Vì 55° ≠ 41°, nên tia OD không phải là phân giác của ∠COE


\(P-Q=\frac{7}{11}.\frac{22}{21}-\frac{14}{25}.\frac{5}{7}=\frac{2}{3}-\frac{2}{5}=\frac{4}{15}=0,2\left(6\right)\)
ĐS: 0,2(6)

a) Ta có : (3x - 0.5) ( 2x + 2.5) = 0
\(\Leftrightarrow\orbr{\begin{cases}3x-0,5=0\\2x+2,5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0,5\\2x=-2,5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{0,5}{3}=\frac{1}{6}\\x=-\frac{2,5}{2}=\frac{5}{4}\end{cases}}\)

\(A=\frac{\left|x-2019\right|+2020-2}{\left|x-2019\right|+2020}=1-\frac{2}{\left|x-2019\right|+2020}\)
Vì \(\left|x-2019\right|\ge0\)
=> \(\left|x-2019\right|+2020\ge2020\)
=> \(\frac{2}{\left|x-2019\right|+2020}\le\frac{2}{2020}\)
=> \(-\frac{2}{\left|x-2019\right|+2020}\ge-\frac{2}{2020}\)
=> \(1-\frac{2}{\left|x-2019\right|+2020}\ge1-\frac{2}{2020}=\frac{2018}{2020}=\frac{1009}{1010}\)
=> \(A\ge\frac{1009}{1010}\)
Dấu "=" xảy ra <=> \(x-2019=0\Leftrightarrow x=2019\)
Vậy GTNN của A bằng 1009/1010 đạt tại x = 2019.