Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Answer:
A M N D B I O
a. Xét tam giác ABC và tam giác DMC
CA = CD
CB = CM
Góc ACB = góc DCM
=> Tam giác ABC = tam giác DMC (c.g.c)
b. Từ chứng minh ở phần a) => Góc ABC = góc CDM hay góc BAD = góc ADM
Mà hai góc ở vị trí so le trong
=> AB//MB
c. bạn thông cảm, ý này mình không biết làm ^^.

a) xét tam giác ABC và tam giác DMC có:
CA=CD
góc ACB= góc DCM ( đối đỉnh)
BC=CM
=> tam giác ABC=tam giác DMC (c.g.c)
b) theo a) tam giác ABC=tam giác DMC=> góc A= góc D
mà đây là 2 góc so le trong nên MD//AB
c) Xét tam giác ICB và tam giác NCM có:
góc B= góc M ( tam giác ABC= tam giác DMC)
BC=MC
góc ICB= góc NCM ( đối đỉnh)
=> tam giác ICB= tam giác NCM( g.c.g)
=> IB=MN
Mà AB=MD ( tam giác ABC= tam giác DMC)
=> AB-IB= MD-MN
=> AI=ND

a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)

E B A C M D O
a) Xét tam giác CMA và tam giác BMD có :
\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)
=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)
=> ACBD là hình bình hành
=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm
b) Xét tam giác ABC và tam giác CDA có :
\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)
Chung AC
=> AD=BC
=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm
c) Xét tam giác ABC có :
M là trung điểm BC
A là trung điểm CE
Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm )
e) AM //BE => AD // BE
Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B
=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)
Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm
=> E,O , D thẳng hàng => đpcm

a) xét tg ABM & tg DCM có
MB=MC (vì M là trung điểm BC)
AMB^ =DMC^(2 GÓC ĐỐI ĐỈNH)
MA =MD (GT)
=) tg ABM=tg DCM(c.g.c)
vậy.......
b) Vì tg ABC =TG DCM nên ABM^ =DCM^ (2 góc tương ứng)
Mà ABM^ & DCM^ ở vị trí so le trong nên AB//DC
vậy.....
c) bó tay
Bạn o0o đồ khùng o0o làm đúng rồi
Bạn Ngọc My Lovely làm theo cách bạn ấy nha
Ai thấy mình nói đúng thì nha

a) Xét tam giác ABM và DCM có:
AM=MD(gt)
Góc CMD=AMB(đối đỉnh)
BM=MC(gt)
=) Tam giác ABM=DCM(đpcm)
b) Vì tam giác ABM=DCM
=) Góc ABM=MCD (hai góc tương ứng)
=) AB//DC(đpvm)
c) Xét tam giác AMB và AMCcó:
AM là cạnh chung
AB=AC(gt)
BM=MC(gt)
=) Tam giác AMB=AMC
=) Góc AMB=AMC(hai góc tương ứng)
Mà hai góc AMB và AMC là hai góc kề bù:
(=) Góc AMB+AMC=1800
=) Góc AMB=AMC=1800 /2=900
=) AM vuông góc với BC
Câu 2:
a: Xét ΔABM và ΔDCM có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔABM=ΔDCM
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
DO đó: ABDC là hình bình hành
Suy ra: AB//DC
c: ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao