Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b1 3 tia phân giác trong gặp nhau tại 1 điểm
boc=125
b2 vì om là tia phân giác nên IE =IF nên tam giác 0ie =oif( cgv ch )
gọi giao điểm của è và om tại h chứng minh tam giác hoe=hò tương tự như câu a

cau 1 :
A B C E
Xet tam giac ABD va tam giac EBD co : BD chung
goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)
AB = BE (Gt)
=> tam giac ABD = tam giac EBD (c - g - c)
=> goc BAC = goc DEB (dn)
ma goc BAC = 90 do tam giac ABC vuong tai A (gt)
=> goc DEB = 90
=> DE _|_ BC (dn)
b, tam giac ABD = tam giac EBD (cau a)
=> AB = DE (dn)
AB = 6 (cm) => DE = 6 cm
DE _|_ BC => tam giac DEC vuong tai E
=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)
=> CE2 = 102 - 62
=> CE2 = 64
=> CE = 8 do CE > 0

a: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có
OM chung
\(\hat{AOM}=\hat{BOM}\)
Do đó: ΔOAM=ΔOBM
=>OA=OB
=>ΔOAB cân tại O
b: ΔOAM=ΔOBM
=>MA=MB
=>M nằm trên đường trung trực của AB(1)
ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1),(2) suy ra MO là đường trung trực của AB
c: MO là đường trung trực của AB
=>MO⊥AB tại trung điểm của AB
=>MO⊥AB tại I và I là trung điểm của AB
I là trung điểm của AB
=>IA=IB
Cho:
- \(O T\) là tia phân giác của góc \(x O y\).
- Trên tia \(O T\) lấy điểm \(M\).
- Kẻ \(M A \bot O x\), \(M B \bot O y\).
a) Chứng minh: \(\triangle O M A \cong \triangle O M B\) và tam giác \(O A B\) cân.
Bước 1: Chứng minh \(\triangle O M A \cong \triangle O M B\)
- \(O T\) là tia phân giác góc \(x O y\) nên:
\(\angle M O T = \angle B O T\)
- \(M\) nằm trên tia phân giác, nên khoảng cách từ \(M\) đến hai tia \(O x\) và \(O y\) là bằng nhau.
- \(M A \bot O x\), \(M B \bot O y\) nên:
\(M A = M B\)
- \(O M\) chung.
- Góc \(\angle O M A = \angle O M B = 90^{\circ}\).
Áp dụng trường hợp cạnh - góc - cạnh (c-g-c):
- \(O M = O M\) (cạnh chung)
- \(\angle O M A = \angle O M B = 90^{\circ}\)
- \(M A = M B\)
=> \(\triangle O M A \cong \triangle O M B\).
Bước 2: Tam giác \(O A B\) cân
- Vì \(\triangle O M A \cong \triangle O M B\), nên:
\(O A = O B\)
Do đó tam giác \(O A B\) cân tại \(O\).
b) Chứng minh: \(O M\) là đường trung trực của đoạn \(A B\)
- Ta đã biết:
\(M A = M B\)
- \(O M \bot A B\) (vì \(M A \bot O x\) và \(M B \bot O y\), tam giác vuông cân nên \(O M\) vuông góc với \(A B\)).
- \(O M\) đi qua \(M\) (điểm trên tia phân giác).
Vì \(O M\) vuông góc với \(A B\) tại \(M\), và \(M\) cách đều \(A\) và \(B\), nên \(O M\) là đường trung trực của \(A B\).
c) Gọi \(I\) là giao điểm của \(A B\) và \(O M\). Chứng minh:
- \(I A = I B\)
- \(O M \bot A B\)
- Vì \(O M\) là đường trung trực của \(A B\), nên giao điểm \(I\) của \(O M\) và \(A B\) cách đều hai đầu \(A , B\), tức:
\(I A = I B\)
- Bản chất đường trung trực thì luôn vuông góc với đoạn thẳng tại trung điểm, nên:
\(O M \bot A B\)
Tóm lại:
- a) \(\triangle O M A \cong \triangle O M B\), tam giác \(O A B\) cân.
- b) \(O M\) là đường trung trực của \(A B\).
- c) Giao điểm \(I\) của \(A B\) và \(O M\) thỏa \(I A = I B\) và \(O M \bot A B\).
x O y m ) ) I E F
a)Xét hai tam giác IOE và IOF có
IO là cạnh chung (gt)
góc IEO= góc IFO(gt)
góc IOE=IOF(Om là tia phân giác góc xOy)
\(\Rightarrow\)tam giác IOE= tam giác IOF (cạnh huyền-góc nhọn kề)
b) mình khum bt
ai trả lời câu hỏi này giúp điiii