
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Các câu hỏi dưới đây có thể giống với câu hỏi trên
HT
0


ML
9 tháng 7 2015
Đặt cái căn dưới mẫu là a, suy ra căn trên tử là \(\sqrt{3+a}\). Nếu đề chính xác thì biến đổi tương đương nhẹ nhàng là ra :))

HD
23 tháng 12 2015
bạn ghi đề sai phải ko? Phải là căn trong căn chứ. sao lại có \(\sqrt{3}+\sqrt{3}+\sqrt{3}...\) hay là \(\sqrt{3+\sqrt{3+\sqrt{.....+\sqrt{3}}}}\)
Lời giải:
Hiển nhiên $\sqrt{2011}> \sqrt{2010}$
$\sqrt{2009}>0$
$\Rightarrow \sqrt{2009}+\sqrt{2011}> \sqrt{2010}$