
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Nếu một số phân tích ra thành tích các thừa số nguyên tố:a=pt11.pt22...ptkk
thì số các số là ước của số a sẽ là (p1+1)(p2+1)...(pk+1)
Dựa vào nhận xét này, ta suy ra để số a là nhỏ nhất ta suy ra các thừa số nguyên tố có trong phân tích của số a phải là các thừa số từ nhỏ nhất đến lớn nhất có thể
Nhận xét thứ hai là với số có 16 ước ta có các trường hợp sau:
16=1.16=2.8=4.4=2.2.4=2.2.2.2
Với trường hợp 16 = 1.16 thì khi đó số a có dạng là a=\(2^{15}\)=32768
Với trường hợp 16 = 2.8 thì số a khi đó số a có dạng là a=\(2^7.3^1\)=384
Với trường hợp 16 = 4.4 thì khi đó số a có dạng là a=\(2^3.3^3\)=216
Với trường hợp 16 = 2.2.4 thì khi đó số a có dạng là a=\(2^3.3^2.5^1\)=120
Với trường hợp 16 = 2.2.2.2 thì khi đó số a có dạng là a=\(2^1.3^1.5^1.7^1\)=210
Bằng lập luận toán học ta vẫn có thể suy ra số a là 120
Bài toán trở thành tìm chữ số tận cùng của \(92^{120}\)
Ta dễ dàng có được: \(92^{120}=92^{4.30}=\left(92^4\right)^{30}=\left(....6\right)^{30}=...6\)
Chúc bạn học tốt

Các công thức lần lượt là:
♦ \(a^m.a^n=a^{m+n}\)
♦ \(a^m:a^n=a^{m-n}\)
♦ \(\left(a^m\right)^n=a^{m.n}\)
♦ \(\left(m.n\right)^a=m^a.n^a\)
♦ \(\left(\dfrac{m}{n}\right)^a=\dfrac{m^a}{n^a}\)
Lần lượt :
a) am.an = am+n
b) am : an = am-n (m≥n , a≠0)
c) (an)m = am.n
d) (a.b)m = am.bm
e- (\(\dfrac{a}{b}\))m = \(\dfrac{^{a^m}}{b^m}\)

3
\(x^m.x^n=x^{m+n}\)
\(x^m:x^n=x^{m-n}\)
\(x^m.y^m=\left(x.y\right)^m\)
\(x^m:y^m=\left(\frac{x}{y}\right)^m\)
2, Định nghĩa: Lũy thừa bậc n của một số hữu tỉ x, kí hiện \(^{x^n}\), là tích của n thừa số x (n là một số tự nhiên lớn hơn 1)

\(x^m:x^n=x^{m-n}\)
\(x^m.x^n=x^{m+n}\)
\(\left(x^m\right)^n=x^{m.n}\)

1. Viết công thức:
- Nhân hai lũy thừa cùng cơ số: tổng 2 số mũ
xm . xn = xm+n
- Chia hai lũy thừa cùng cơ số: hiệu 2 số mũ
xm : xn = xm - n (x # 0, lớn hơn hoặc bằng n)
- Lũy thừa của 1 lũy thừa: Tích 2 số mũ
(xm )n = xm.n
- Lũy thừa của một tích: tích các lũy thừa
(x . y)n = xn . yn
- Lũy thừa của một thương: thương các lũy thừa
2. Thế nào là tỉ số của hai số hữu tỉ ? Cho ví dụ
- Số hữu tỉ là số viết đc dưới dạng phân số \(\frac{a}{b}\)
Vd: \(\frac{3}{4}\); 18

81975 = (84)493.83 = \(\overline{..6}\)493. \(\overline{...2}\) = \(\overline{..2}\)