
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đặt độ dài cạnh của hình lập phương là a
Ta có : \(\overrightarrow{AG}.\overrightarrow{BE}=\left(\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AE}\right)\left(\overrightarrow{AE}-\overrightarrow{AB}\right)\)
⇒ \(\overrightarrow{AG}.\overrightarrow{BE}=\overrightarrow{AB}.\overrightarrow{AE}-AB^2+\overrightarrow{AD}.\overrightarrow{AE}-\overrightarrow{AD}.\overrightarrow{AB}+AE^2-\overrightarrow{AE}.\overrightarrow{AB}\)
Các tích vô hướng ở vế phải bằng 0 và AE = AB
⇒ \(\overrightarrow{AG}.\overrightarrow{BE}=0\) ⇒ AG ⊥ BE, tức góc giữa hai đường thẳng này bằng 900

- Mỗi số tự nhiên cần lập là số tự nhiên có không quá 2 chữ số, được lập từ các chữ số 1, 2, 3, 4, 5, 6.
- Để lập được số tự nhiên như vậy, phải thực hiện một hành động trong hai hành động loại trừ nhau sau đây:
- Hành động 1: Từ các chữ số 1, 2, 3, 4, 5, 6, lập số tự nhiên có một chữ số. Có 6 cách để thực hiện hành động này.
- Hành động 2: Từ các chữ số 1, 2, 3, 4, 5, 6, lập số tự nhiên có hai chữ số.
- Vận dụng quy tắc nhân, ta tìm được: Có 62 = 36 cách để thực hiện hành động này.
- Theo quy tắc cộng suy ra số các cách để lập được các số tự nhiên kể trên là
6 + 36 = 42 (cách)
- => Qua trên suy ra từ các chữ số đã cho có thể lập được 42 số tự nhiên bé hơn 100.

Chọn mp(SBD) có chứa SD
B∈(SBD)
B∈(MBC)
Do đó: B∈(SBD) giao (MBC)(1)
M∈SO⊂(SBD)
M∈(MBC)
Do đó: M∈(SBD) giao (MBC)(2)
Tư (1),(2) suy ra (SBD) giao (MBC)=BM
Gọi E là giao điểm của BM va SD
=>E là giao điểm của SD và mp(MBC)
Chọn mp(SAD) có chứa SA
E∈MB⊂(MBC)
E∈ SD⊂(SAD)
Do đó: E∈(MBC) giao (SAD)
Xét (MBC) và (SAD) có
E∈(MBC) giao (SAD)
BC//AD
Do đó: (MBC) giao (SAD)=xy, xy đi qua E và xy//BC//AD
Gọi F là giao điểm của SA va xy
=>F là giao điểm của SA và mp(MBC)
Vì xy//AD
nên EF//AD

Nếu mà không quá 1 em nữ => Không có em nữ nào tham gia.
=> 5 em trên là 5 em nam và chỉ có 1 cách chọn.
Cô hoài giả mạo !!!
Cô hoài giả mạo