Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
giải giúp mik vs cần gấp lắm nha sáng mai mình phải nộp bài rồi ^_^
xin loi nha toi hom nay minh moi biet nhung minh cung khong biet bai lop 8 ,nen minh khong biet xin loi nha
![](https://rs.olm.vn/images/avt/0.png?1311)
b1: ta có: a^2+b^2 >0 ; b^2 +c^2>0 ; c^2 +a^2>0
=> \(a^2+b^2\ge2\sqrt{a^2.b^2}\) (BĐT cau chy)
\(b^2+c^2\ge2\sqrt{b^2.c^2}\) (BĐT cau chy)
\(c^2+a^2\ge2\sqrt{c^2.a^2}\)(BĐT cauchy)
=>\(\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge8a^2.b^2.c^2\)
Dấu '= xảy ra khi a=b=c (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2-6x+10\)
\(=x^2-2.x.3+9+1\)
\(=\left(x-3\right)^2+1>0\)
\(4x^2-20x+27\)
\(=\left(2x\right)^2-2.2x.5+25+2\)
\(=\left(2x-5\right)^2+2>0\)
\(x^2+x+1\)
\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
học tốt
a) A=x2 _ 6x + 10
<=> A=x2-6x+9+1
<=> A=(x-3)2+1 luôn dương với mọi x
b) B=4x2 _ 20x + 27
<=> 4x2-20x +25+2
<=> (2x-5)2+2 luôn dương với mọi x
c) C=x2 + x +1
<=> x2+2.x 1/2 + 1/4 +3/4
<=> (x+1/2)2+3/4 luôn dương với mọi x
![](https://rs.olm.vn/images/avt/0.png?1311)
\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+2ab+b^2-2ab\right)+6a^2b^2\)
\(=\left(a^2+2ab+b^2-3ab\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\)
\(=\left(a+b\right)^2-3ab+3ab\times\left(-2ab\right)+6a^2b^2\)
\(=-3ab-6a^2b^2+6a^2b^2\)
= - 3ab
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1/ = ab-ac-ab-bc+ac-bc
= -2bc
2/ = a^3 +a.b^2 +a.c^2 -a^2 .b - a.b^2 -abc -a^2 .c +a^2 .b +b^3 +bc^2 -a.b^2 -b^2 .c -abc +a^2 .c +b^2 .c +c^3 -abc- b.c^2 -a.c^2
= a^3 +b^3 +c^3 -3abc
Bạn chỉ cần nhân ra thôi. Chúc bạn học tốt.
Chứng Minh: a) a2 + b2 >= 2ab với mọi ab
b) x2+2x+3>0 với mọi x
Trình bày rõ ràng giúp tớ nha (toán8)
![](https://rs.olm.vn/images/avt/0.png?1311)
câu a :
\(a^2+b^{^{ }2}\ge2ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)
( a - b ) ^ 2 >= 0 là điều hiển nhiên nên suy ra \(a^2+b^2\ge2ab\)với mọi a ,b
câu b :
\(^{x^2+2x+3\ge0\Leftrightarrow x^2+2x+1+2\ge0\Leftrightarrow\left(x+1\right)^2+2\ge0}\)
vì ( x+1 )^2 >= 0 nên (x + 1 )^2 +2 > 0 với mọi x
\(a^2+b^2+c^2\ge2\left(a+b+c\right)-3\)
\(\Leftrightarrow a^2+b^2+c^2\ge2a+2b+2c-3\)
\(\Leftrightarrow a^2+b^2+c^2-2a-2b-2c+3\ge0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (luôn đúng)
Vậy \(a^2+b^2+c^2\ge2\left(a+b+c\right)-3\)