Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)
\(=\frac{x^2y+xy^2+xy^2+y^3}{2x^2+2xy-xy-y^2}\)
\(=\frac{xy\left(x+y\right)+y^2\left(x+y\right)}{2x\left(x+y\right)-y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)\left(xy+y^2\right)}{\left(2x-y\right)\left(x+y\right)}=\frac{xy+y^2}{2x-y}\left(đpcm\right)\)
Ta có: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(=\frac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}\)
\(=\frac{x\left(x+y\right)+2y\left(x+y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)
\(=\frac{\left(x+2y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ngu ngườingu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
![](https://rs.olm.vn/images/avt/0.png?1311)
1.a (3x-2y)2= (3x)2 - 2. 3x . 2y - (2y)2 = 9x2 - 12xy - 4y2
2.b (2x - 1/2)2 = (2x)2 - 2.2x.1/2 - (1/2)2= 4x2 - 2 - 1/4
3.c (x/2 - y) (x/2+y)= (x/2)2 - (y)2 = x/4 - y2
Bài 1 :
\(\left(3x-2y\right)^2=9x^2-12xy+4y^2\)
\(\left(2x-\frac{1}{2}\right)^2=4x^2-4x+\frac{1}{4}\)
\(\left(\frac{x}{2}-y\right)\left(\frac{x}{2}+y\right)=\frac{x^2}{4}-y^2\)
\(\left(x+\frac{1}{3}\right)^3=x^3+x^2+\frac{1}{3}x+\frac{1}{27}\)
\(\left(x-2\right)\left(x^2+2x+2^2\right)=x^3-8\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (2x^2 +2xy - xy -y^2 ) / (2x^2 - 2xy - xy +y^2)
= 2x(x+y) - y(x+y) / 2x(x-y) - y(x-y)
= (2x-y)(x+y) / (2x-y)(x-y)
= x+y/x-y
Rút gọn cái sau:
\(\frac{32x+4x^2+2x^3}{x^3+64}\)
\(=\frac{2x\left(x^2+2x+16\right)}{\left(x+4\right)\left(x^2-4x+16\right)}\)
Đề có vẻ sai sai ?
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}=\dfrac{1}{x-y}\)
\(VT=\dfrac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}\)
\(=\dfrac{2x^2+2xy+xy+y^2}{\left(2x^3+x^2y\right)+\left(-2xy^2-y^3\right)}\)
\(=\dfrac{\left(2x^2+2xy\right)+\left(xy+y^2\right)}{x^2\left(2x+y\right)-y^2\left(2x+y\right)}\)
\(=\dfrac{2x\left(x+y\right)+y\left(x+y\right)}{\left(x^2-y^2\right)\left(2x+y\right)}\)
\(=\dfrac{\left(2x+y\right)\left(x+y\right)}{\left(x^2-y^2\right)\left(2x+y\right)}\)
\(=\dfrac{x+y}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{1}{x-y}=VP\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)
d: \(=\dfrac{x^2-4-x^2+10}{x+2}=\dfrac{6}{x+2}\)
e: \(=\dfrac{1}{2\left(x-y\right)}-\dfrac{1}{2\left(x+y\right)}-\dfrac{y}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{x+y-x+y-2y}{2\left(x-y\right)\left(x+y\right)}=\dfrac{0}{2\left(x-y\right)\left(x+y\right)}=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(VT=x\sqrt{y}+\frac{1}{2}y\sqrt{4\left(2x+2y\right)}\le\frac{x\left(y+1\right)}{2}+\frac{1}{2}y\left(\frac{4+2x+2y}{2}\right)\)
\(=\frac{2xy+2x}{4}+\frac{4y+2xy+2y^2}{4}=\frac{2\left(x+2y\right)+4xy+2y^2}{4}\)
\(=\frac{2\left(x+2y\right)+\frac{2}{3}.3y\left(2x+y\right)}{4}\le\frac{2\left(x+2y\right)+\frac{2}{3}\left(\frac{2\left(x+2y\right)}{2}\right)^2}{4}\le3\) (*)
Đẳng thức xảy ra khi x= y = 1.
Is that true? Bài này khó nhằn đấy, Đối với mình việc nhìn ra chỗ (*) ko dễ chút nào, chả biết có tính sai gì ko nữa..
Sửa lại đề : \(\frac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}\)
Ta có : \(\frac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}\) \(=\) \(\frac{2x^2+3xy+y^2}{\left(x-y\right)\left(2x^2+3xy+y^2\right)}\)
\(=\frac{1}{x-y}\) ( Chia cả tử và mẫu cho \(2x^2+3xy+y^2\))