Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chắc câu c quá, tại tổng 2 ô vuông của hình chữ nhật có 10 chấm tròn. =)
Em nghĩ là câu c vì thấy tổng của các chấm tròn ở mỗi miếng đều là 10.

Đáp án b
Các hình màu xanh là phản chiếu của các hình máu cam trong gương.
Nhìn sơ sơ đoán là chọn B
Kiểu 2 hình ở gần (đáy hình cam trên và đỉnh hình xanh dưới sẽ giống nhau), 2 hình còn lại giống nhau tại vị trí đỉnh trên hình cam và đáy dưới hình xanh

1.
a. Em tự giải
b.
\(\left\{{}\begin{matrix}2x+y=4m-1\\3x-2y=-m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x+2y=8m-2\\3x-2y=-m+9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+7\\y=\dfrac{3x+m-9}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+1\\y=2m-3\end{matrix}\right.\)
Để \(x+y=7\Rightarrow m+1+2m-3=7\)
\(\Rightarrow3m=9\Rightarrow m=3\)
2.
a. Em tự giải
b.
Phương trình có 2 nghiệm khi:
\(\Delta'=\left(m+1\right)^2-\left(2m+10\right)=m^2-9\ge0\)
\(\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m+10\end{matrix}\right.\)
Ta có:
\(P=x_1^2+x_2^2+8x_1x_2=\left(x_1+x_2\right)^2+6x_1x_2\)
\(=4\left(m+1\right)^2+6\left(2m+10\right)=4m^2+20m+64\)
\(=4\left(m^2+5m+6\right)+40=4\left(m+2\right)\left(m+3\right)+40\)
Do \(\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\) \(\Rightarrow\left(m+2\right)\left(m+3\right)\ge0\)
\(\Rightarrow P\ge40\)
Vậy \(P_{min}=40\) khi \(m=-3\)
(Nếu bài này giải là \(4m^2+20m+64=\left(2m+5\right)^2+39\ge39\) là sai vì dấu = khi đó xảy ra tại \(m=-\dfrac{5}{2}\) ko thỏa mãn điều kiện \(\Delta\) để pt có nghiệm)

a, Ta có tam giác \(A B C\) nhọn, kẻ:
- \(B D \bot A B\)
- \(C D \bot A C\)
=> Các góc tại \(B\) và \(C\) đều là góc vuông.
Ta xét tứ giác \(A B D C\):
- \(\angle A B D = 90^{\circ}\) (do \(B D \bot A B\))
- \(\angle A C D = 90^{\circ}\) (do \(C D \bot A C\))
Suy ra:
\(\angle A B D + \angle A C D = 180^{\circ}\)
Mà tổng góc trong tứ giác bằng \(360^{\circ}\), nên:
\(\angle B A D + \angle B C D + 180^{\circ} = 360^{\circ} \Rightarrow \angle B A D + \angle B C D = 180^{\circ}\)
Mà \(\angle B A D\) chính là góc tại \(A\) của tam giác \(A B C\), ký hiệu là \(\angle A\),
\(\angle B C D\) chính là góc tại \(D\) trong tứ giác (ký hiệu là \(\angle D\)).
⇒ \(\Rightarrow \angle D + \angle A = 180^{\circ}\)
b, * Chứng minh \(Q J = B D\)
Vì \(I\) là trung điểm của \(P Q\) và \(B J\), nên:
- \(I P = I Q\) (trung điểm \(P Q\))
- \(I B = I J\) (trung điểm \(B J\))
Xét hai tam giác \(I P B\) và \(I Q J\):
- \(I P = I Q\) (gt)
- \(I B = I J\) (gt)
- \(\angle P I B = \angle Q I J\) (đối đỉnh)
⇒ Tam giác \(I P B\) ≅ tam giác \(Q I J\) (cạnh – cạnh – góc xen giữa)
Suy ra:
\(P B = Q J\)
Nhưng \(P B = A B - A P = A B - \left(\right. A B - B P \left.\right) = B P\), mà \(B P = B D\) (gt)
⇒ \(Q J = P B = B P = B D \Rightarrow \boxed{Q J = B D}\)
*Chứng minh \(\angle A Q J + \angle D = 180^{\circ}\)
Ta đã biết ở phần a): \(\angle A + \angle D = 180^{\circ} .\)
Ta sẽ chứng minh \(\angle A Q J = \angle A\)
Xét hai tam giác:
- Tam giác \(A B P\): có \(B P = B D\) (gt)
- Tam giác \(A C Q\): có \(C Q = C D\) (gt)
Do \(B D \bot A B\), \(C D \bot A C\) ⇒ \(B D\) là đường cao tam giác \(A B C\), tương tự \(C D\) cũng là đường cao.
Suy ra tam giác \(A B P\) vuông tại \(B\), tam giác \(A C Q\) vuông tại \(C\). Hai điểm \(P , Q\) được lấy đối xứng vai trò như nhau theo hai cạnh của tam giác \(A B C\).
Lại có \(Q J = B D = B P\) (ở trên vừa chứng minh), do đó tam giác \(A Q J\) đồng dạng với tam giác \(A B C\) ⇒
\(\angle A Q J = \angle A .\)
Vậy:
\(\angle A Q J + \angle D = \angle A + \angle D = 180^{\circ} . \textrm{ }\textrm{ } \textrm{ } (đ\text{pcm})\)




a: ta có: AH⊥CD
OM⊥CD
BK⊥CD
Do đó: AH//OM//BK
Xét ΔAKB có
O là trung điểm của AB
ON//KB
DO đó: N là trung điểm của AK
=>AN=NK
b: Xét hình thang ABKH có
O là trung điểm của AB
OM//AH//BK
Do đó: M là trung điểm của HK
=>MH=MK
c: ΔOCD cân tại O
mà OM là đường cao
nên M là trung điểm của CD
Ta có: MC+CH=MH
MD+DK=MK
mà MC=MD và MH=MK
nên CH=DK

ABCD là hình vuông
mà O là giao điểm của hai đường chéo
nên AC⊥BD tại O; O là trung điểm chung của AC và BD; AC=BD
=>\(OA=OB=OC=OD=\frac{AC}{2}\)
=>\(AC=2\cdot AO=2\cdot2\sqrt2=4\sqrt2\) >4
=>C nằm ngoài (A;4cm)
Ta có: OA=OB=OD
mà \(OA=2\sqrt2\)
nên \(OB=OD=2\sqrt2\)
ΔOAB vuông tại O
=>\(OA^2+OB^2=AB^2\)
=>\(AB^2=\left(2\sqrt2\right)^2+\left(2\sqrt2\right)^2=8+8=16=4^2\)
=>AB=4(cm)
=>B nằm trên (A;4cm)
Ta có: ABCD là hình vuông
=>AB=AD=4cm
=>D nằm trên (A;4cm)
2:
Xét ΔABC vuông tại A có AH là đường cao
nên BH*HC=AH^2
Xét ΔAHM vuông tại H có HN là đường cao
nên AN*AM=AH^2
=>AN*AM=BH*HC
=>2*AN*AM=2*BH*HC
=>2*BH*HC=BC*AN
3: sin2C=2*sinC*cosC
mà cosC=sinB
nên sin2C=2*sinB*sinC