Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số tự nhiên cần tìm có dạng là ab(Điều kiện: \(a,b\in Z^+\); \(0< a< 10\); \(0< b< 10\))
Vì tổng các chữ số của nó bằng 10 nên ta có phương trình: a+b=10(1)
Vì khi số ấy viết theo thứ tự ngược lại thì số ấy giảm 36 đơn vị nên ta có phương trình:
\(10b+a=10a+b-36\)
\(\Leftrightarrow10b+a-10a-b=-36\)
\(\Leftrightarrow-9a+9b=-36\)
\(\Leftrightarrow a-b=4\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=10\\a-b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b=6\\a-b=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=4+b\\b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4+3=7\\b=3\end{matrix}\right.\)
Vậy: Số cần tìm là 73
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi chữ số hàng chục là của số cần tìm là \(x\)(điều kiện: \(3< x\le9;x\inℕ\)).
Chữ số hàng đơn vị của số cần tìm là \(x-3\).
Vì tổng các bình phương của 2 chữ số là \(45\) nên ta có phương trình:
\(x^2+\left(x-3\right)^2=45\).
\(\Leftrightarrow x^2+x^2-6x+9-45=0\).
\(\Leftrightarrow2x^2-6x-36=0\).
\(\Leftrightarrow2\left(x^2-3x-18\right)=0\).
\(\Leftrightarrow x^2-3x-18=0\).
\(\Leftrightarrow\left(x-6\right)\left(x+3\right)=0\).
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\left(tm\right)\\x=-3\left(ktm\right)\end{cases}}\)(tm: Thỏa mãn; ktm: Không thỏa mãn).
\(\Leftrightarrow x=6\).
Do đó chữ số hàng đơn vị của chữ số cần tìm là \(6-3=3\).
Vậy số cần tìm là \(63\)
Bài làm :
Gọi x ; y lần lượt là chữ số hàng chục và chữ số hàng đơn vị .
Điều kiện : \(x,y\inℕ;x>3\)
Theo đề bài ; ta có hệ phương trình ;
\(\hept{\begin{cases}x=y+3\\x^2+y^2=45\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y+3\\\left(y+3\right)^2+y^2=45\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y+3\\y^2+6y+9+y^2-45=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y+3\\2y^2+6y-36=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y+3\\y^2+3y-18=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)
Vậy số cần tìm là 63
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: ¯¯¯¯¯¯¯¯abc=(a+b+c)3abc¯=(a+b+c)3 mà 100≤¯¯¯¯¯¯¯¯abc≤999⇒5≤a+b+c≤9100≤abc¯≤999⇒5≤a+b+c≤9
Xét các TH:TH:
+)a+b+c=5⇒¯¯¯¯¯¯¯¯abc=125(L)+)a+b+c=5⇒abc¯=125(L)
+)a+b+c=6⇒¯¯¯¯¯¯¯¯abc=216(L)+)a+b+c=6⇒abc¯=216(L)
+)a+b+c=7⇒¯¯¯¯¯¯¯¯abc=343(L)+)a+b+c=7⇒abc¯=343(L)
+)a+b+c=8⇒¯¯¯¯¯¯¯¯abc=512(t/m)+)a+b+c=8⇒abc¯=512(t/m)
+)a+b+c=9⇒¯¯¯¯¯¯¯¯abc=729(L)+)a+b+c=9⇒abc¯=729(L)
Vậy số cần tìm là 512
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số cần tìm là ab
Điều kiện: \(\hept{\begin{cases}0< a\le9\\0\le b\le9\\a,b\in N\end{cases}}\)
Ta có: a+b=10 => a = 10-b
ab = ab - 12
=> (10-b)b = 10a + b -12
=> 10b - b^2 = 10(a+b) - 9b - 12
=> 19b - b^2 = 10.10 - 12 = 88
=> b^2 - 19b + 88 = 0
=> b^2 - 11b - 8b +88 = 0
=> b(b-11) - 8(b-11) = 0
=> (b-8)(b-11) = 0
=> b-8=0 hoặc b-11=0
=> b=8(thỏa điều kiện) hoặc b=11(không thỏa điều kiện)
Có: a+b=10 => a+8=10 => a=2
Đặt tên cho số đó là ...mn đi
Bình phương của mn là ( mn)^2 . Lập phương tổng các chữ số là : ( m+n) ^3
=> (mn)^2 = (m+n)^3
=> mn phải là lập phương của 1 số [ vì bằng (m+n) ^ 3 mà] và ngược lại m+n sẽ là bình phương của 1 số
Từ đó mn thuộc { 27 ; 64} => thử đi, ta sẽ được mn = 27
Đó chỉ là 1 cách làm của tui thui nha, hông chắc là đúng đâu. Dù gì nhớ tick tui nha
27
Tick nha