Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
b: \(\Leftrightarrow2+\sqrt{3x-5}=x+1\)
\(\Leftrightarrow\sqrt{3x-5}=x-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+1=3x-5\\x>=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+6=0\\x>=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;3\right\}\)
c: \(\Leftrightarrow5x+7=16\left(x+3\right)\)
=>16x+48=5x+7
=>11x=-41
hay x=-41/11
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
ĐKXĐ: $-2\leq x\leq 2$
Đặt $\sqrt{2-x}=a; \sqrt{2+x}=b(a,b\geq 0)$
Ta có: \(\left\{\begin{matrix} a+b+ab=2\\ a^2+b^2=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=2-ab\\ (a+b)^2-2ab=4\end{matrix}\right.\)
\(\Rightarrow (2-ab)^2-2ab=4\)
\(\Leftrightarrow (ab)^2-6ab=0\Rightarrow \left[\begin{matrix} ab=0\\ ab=6\end{matrix}\right.\)
Nếu $ab=0\Rightarrow a+b=2$. Theo định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2-2X=0\Rightarrow (a,b)=(0,2); (2,0)$
$\Rightarrow x=2$
Nếu $ab=6\Rightarrow a+b=-4$. Theo định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2+4X+6=0$ (pt này vô nghiệm)
Vậy $x=2$
Bài 2:
ĐK: $x\geq \frac{-1}{3}
PT \(\Leftrightarrow \sqrt{5x+7}=\sqrt{x+3}+\sqrt{3x+1}\)
\(\Rightarrow 5x+7=4x+4+2\sqrt{(x+3)(3x+1)}\)
\(\Leftrightarrow x+3=2\sqrt{(x+3)(3x+1)}\)
\(\Leftrightarrow \sqrt{x+3}(\sqrt{x+3}-2\sqrt{3x+1})=0\)
Vì $x\geq \frac{-1}{3}$ nên $\sqrt{x+3}\neq 0$
Do đó $\sqrt{x+3}-2\sqrt{3x+1}=0$
$\Rightarrow x+3=4(3x+1)$
$\Rightarrow x=-\frac{1}{11}$ (thỏa mãn)
Vậy..........
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
Xét riêng 2 căn lớn đầu tiên
Bình phương, thu gọn được căn(12-8 căn 2)
Giờ kết hợp kết quả này với căn lớn còn lại
Tiếp tục bình phương, thu gọn là xong
![](https://rs.olm.vn/images/avt/0.png?1311)
mấy bài này thì bạn cứ đặt ẩn phụ cho dễ nhìn hơn mà giải nhé
a, \(\hept{\begin{cases}\frac{1}{2x-y}+x+3y=\frac{3}{2}\\\frac{4}{2x-y}-5\left(x+3y\right)=-3\end{cases}}\)ĐK : \(2x\ne y\)
Đặt \(\frac{1}{2x-y}=t;x+3y=u\)hệ phương trình tương đương
\(\hept{\begin{cases}t+u=\frac{3}{2}\\4t-5u=-3\end{cases}\Leftrightarrow\hept{\begin{cases}4t+4u=6\\4t-5u=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}9u=9\\4t=-3+5u\end{cases}}\Leftrightarrow\hept{\begin{cases}u=1\\t=\frac{-3+5}{4}=\frac{1}{2}\end{cases}}}\)
Theo cách đặt \(\hept{\begin{cases}x+3y=1\\\frac{1}{2x-y}=\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=1\\2x-y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+6y=2\\2x-y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}7y=4\\x=\frac{y+2}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{4}{7}\\x=\frac{9}{7}\end{cases}}}\)
Vậy hệ pt có một nghiệm (x;y) = (9/7;4/7)