Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)\(\left(4\frac{5}{37}-3\frac45+8\frac{15}{29}\right)-\left(3\frac{5}{57}-6\frac{14}{29}\right)\)
=\(4\frac{5}{37}-3\frac45+8\frac{15}{29}-3\frac{5}{37}+6\frac{14}{29}\)
=\(\left(4\frac{5}{37}-3\frac{5}{37}\right)+\left(8\frac{15}{29}+6\frac{14}{29}\right)-3\frac45\)
=\(\left\lbrack\left(4-3\right)+\left(\frac{5}{37}-\frac{5}{37}\right)\right\rbrack+\left\lbrack\left(8+6\right)+\left(\frac{15}{29}\right.\right.\)+\(\frac{14}{29})\) -\(\frac{19}{5}\)
=\(1+0+14+1-\frac{19}{5}\)
=\(15+1-\frac{19}{5}\)
=\(16-\frac{19}{5}\)
=\(\frac{80}{5}-\frac{19}{5}\)
=\(\frac{61}{5}\)

=>(5/17+12/17)+(-20/31-11/31)-4/9<=x/9<=(-3/7-4/7)+(7/15+8/15)+2/3
=>-4/9<=x/9<=6/9
=>-4<=x<=6
hay \(x\in\left\{-4;-3;-2;-1;0;...;6\right\}\)

\(a.\)
\(A=\)\(\frac{10^{15}+1}{10^{16}+1}\)
\(10A=\) \(\frac{10\left(10^{15}+1\right)}{10^{16}+1}\)
\(10A=\) \(\frac{10^{16}+10}{10^{16}+1}\)
\(10A=\)\(\frac{10^{16}+1+9}{10^{16}+1}\)
\(10A=\frac{10^{16}+1}{10^{16}+1}+\frac{9}{10^{16}+1}\)
\(10A=1+\frac{9}{10^{16}+1}\)
\(B=\frac{10^{16}+1}{10^{17}+1}\)
\(10B=\frac{10\left(10^{16}+1\right)}{10^{17}+1}\)
\(10B=\frac{10^{17}+10}{10^{17}+1}\)
\(10B=\frac{10^{17}+1+9}{10^{17}+1}\)
\(10B=\frac{10^{17}+1}{10^{17}+1}+\frac{9}{10^{17}+1}\)
\(10B=1+\frac{9}{10^{17}+1}\)
\(\Rightarrow10B< 10A\Rightarrow B< A\)\(\text{( vì tự làm ) }\)
xin lỗi hôm qua mk đang làm thì phải đy học zoom học xong quên h mới nhơ ra làm típ :)
b
\(A=\frac{3}{8^3}+\frac{7}{8^4}=\frac{3}{8^3}+\frac{3}{8^4}+\frac{4}{8^4}\)
\(B=\frac{3}{8^4}+\frac{7}{8^3}=\frac{3}{8^4}+\frac{3}{8^3}+\frac{4}{8^3}\)
Vì \(\frac{4}{8^4}< \frac{4}{8^3}\)=.> A < B

Mình biết làm nhưng bạn nên viết rời ra.Viết liền làm người khác không muốn làm đó.
Làm thì dài quá nên mình gợi ý thôi nhé
a)quy đồng
b)Sử dụng phần bù
c)(1/80)^7>(1/81)^7=(1/3^4)^7=1/3^28
(1/243)^6=(1/3^5)^6=1/3^30
Vì 1/3^28>1/3^30 nên ......
d)Tương tự câu d
Mấy câu còn lại thì nhắn tin với mình,mình sẽ trả lời cho,mình đang mệt lắm rồi nha!!!

Câu 1:
\(S=\frac{10}{7}+\frac{10}{7^2}+\frac{10}{7^3}+...+\frac{10}{7^{10}}\)
\(\frac{1}{7}S=\frac{10}{7^2}+\frac{10}{7^3}+....+\frac{10}{7^{11}}\)
\(\rightarrow\)\(\left(1-\frac{1}{7}\right).S=\frac{10}{7}-\frac{10}{7^{11}}\)
=> \(S=\frac{10.7^{10}-10}{7^{10}.6}\)
Ta có: \(\dfrac{7}{15}+\dfrac{9}{10}+\dfrac{8}{15}+\dfrac{1}{10}+\dfrac{-20}{10}+\dfrac{1}{157}\)
\(=\left(\dfrac{7}{15}+\dfrac{8}{15}\right)+\left(\dfrac{9}{10}+\dfrac{1}{10}+\dfrac{-20}{10}\right)+\dfrac{1}{157}\)
\(=1+\left(-1\right)+\dfrac{1}{157}\)
\(=0+\dfrac{1}{157}=\dfrac{1}{157}.\)
Ta có: \(\dfrac{7}{15}+\dfrac{9}{10}+\dfrac{8}{15}+\dfrac{1}{10}+\dfrac{-20}{10}+\dfrac{1}{157}\)
= \(\left(\dfrac{7}{15}+\dfrac{8}{15}\right)+\left(\dfrac{9}{10}+\dfrac{1}{10}+\dfrac{-20}{10}\right)+\dfrac{1}{157}\)
= \(\dfrac{7+8}{15}+\dfrac{10-20}{10}+\dfrac{1}{157}\)
= 1-1+\(\dfrac{1}{157}\)= 0 + \(\dfrac{1}{157}\) = \(\dfrac{1}{157}\)