Biết hình vuông bên có độ dài đường chéo 2a.

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2023

Áp dụng định lý Py-ta-go ta tính được đường chéo của hình vuông:

Cạnh của hình vuông là:
\(\sqrt{\dfrac{\left(2a\right)^2}{2}}=\sqrt{\dfrac{4a^2}{2}}=\sqrt{2a^2}=\left|a\right|\sqrt{2}=a\sqrt{2}\)

Diện tích của hình vuông:
\(\left(a\sqrt{2}\right)^2=2a^2\)

Độ dài cạnh là:

\(\sqrt{\dfrac{\left(2a\right)^2}{2}}=a\sqrt{2}\)

Diện tích là;

\(\left(a\sqrt{2}\right)^2=2a^2\)

DD
28 tháng 7 2021

Đặt \(a=x+1,b=x+3\)với \(x=11...1\)(\(n\)chữ số \(1\))

\(ab+1=\left(x+1\right)\left(x+3\right)+1=x^2+4x+3+1\)

\(=x^2+4x+4=\left(x+2\right)^2\)

Do đó ta có đpcm. 

1.Đường thẳng đi qua hai trung điểm của hai cạnh đối diện của một tứ giác lồi tạo bởi hai đường chéo hai góc bằng nhau.Chứng minh tứ giác ấy có hai đường chéo bằng nhau. 2.Cho tam giác ABC(AB ≠ AC). Trên tia đối của các tia BA,CA lần lượt lấy các điểm D và E sao cho BD=CE. Gọi M,N lần lượt là trung điểm của DE và BC. Chứng minh rằng MN song song với tia phân giác của góc A3. Cho hình bình...
Đọc tiếp

1.Đường thẳng đi qua hai trung điểm của hai cạnh đối diện của một tứ giác lồi tạo bởi hai đường chéo hai góc bằng nhau.Chứng minh tứ giác ấy có hai đường chéo bằng nhau.

 

2.Cho tam giác ABC(AB ≠ AC). Trên tia đối của các tia BA,CA lần lượt lấy các điểm D và E sao cho BD=CE. Gọi M,N lần lượt là trung điểm của DE và BC. Chứng minh rằng MN song song với tia phân giác của góc A

3. Cho hình bình hành ABCD. Gọi d là đường thẳng qua A và không cắt đoạn thẳng BD. Gọi BB', CC', DD' lần lượt là khoảng cách từ B, C, D đến đường thẳng d (B', C', D' thuộc d). Chứng minh rằng BB' + DD' = CC'

4. Gọi P là trung điểm thuộc cạnh BC (PB khác PC), N là trung điểm của cạnh CD, Q là điểm thuộc cạnh AD (QA khác QD). Biết MNPQ là hình bình hành .CMR: 

giúp mk vs mk đg cần gấp

2

\(3.\)

Gọi O là giao điểm của AC và BD

ABCD là hình bình hành nên O là trung điểm của AC và BD

Vẽ \(OO'\perp d;O'\in d\)

Các đường thẳng \(BB';CC';DD';OO'\)song song với nhau vì cùng vuông góc với đường thẳng d

\(B'D'DB\)là hình thang (Vì \(BB'//DD'\)) có: \(OB=OD;OO'//BB'\)nên \(OO'\)là đường trung bình của hình thang \(B'D'DB\)\(OO'=\frac{1}{2}\left(BB'+DD'\right)\)(*)

Mặt khác \(\Delta ACC'\)\(OO'//CC';OA=OC\)

Nên OO' là đường trung bình của \(\Delta ACC'\)\(OO'=\frac{1}{2}CC'\)(**)

Từ (*) và (**) \(\Rightarrow BB'+DD'=CC'\)

O B' B A O' C' d D' C D

22 tháng 3 2015

giả thiết => \(\frac{M\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{N\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\frac{32x-19}{\left(x+1\right)\left(x-2\right)}\)

=> M(x-2) + N(x+1) = 32x - 19

<=> M.x - 2.M + N.x + N = 32.x -19

=> (M+ N).x + (N - 2.M) = 32.x - 19

=> M+ N = 32 và -2M + N = -19 

=> M = 17, N = 15

vậy M.N = 17. 15 =...

31 tháng 3 2016

Đăng thiếu rồi kìa-_-

31 tháng 3 2016

bạn gửi cho mk chỉ có vậy thôi

Hình thang ABCS, đáy nhỏ AB, đáy lớn CD, giao điểm của 2 đường chéo hình thang là O, kẻ đoạn thẳng qua O và song song với đường cao của hinh thang cắt AB tại M, CD tại N, đường cao ABCD là AH. nên MN=AH

HÌnh thang ABCD cân nên tam giác AOB và DOC cân, nên M, N là trugn điểm của AB và CD

OM là trung tuyến tam giác vuông AOB nên OM = 1/2 AB, tương tự có ON=1/2 CD nên MN= (AB+CD)/2

đường trung bình hình thang cũng bằng (AB+CD)/2. do đó đường trung bình hình thang = MN=AH=10cm

Hình thang ABCS, đáy nhỏ AB, đáy lớn CD, giao điểm của 2 đường chéo hình thang là O, kẻ đoạn thẳng qua O và song song với đường cao của hinh thang cắt AB tại M, CD tại N, đường cao ABCD là AH. nên MN=AH

HÌnh thang ABCD cân nên tam giác AOB và DOC cân, nên M, N là trugn điểm của AB và CD

OM là trung tuyến tam giác vuông AOB nên OM = 1/2 AB, tương tự có ON=1/2 CD nên MN= (AB+CD)/2

đường trung bình hình thang cũng bằng (AB+CD)/2. do đó đường trung bình hình thang = MN=AH=10cm

HT

DD
28 tháng 7 2021

a) \(n=a^2+b^2\)

\(2n=2a^2+2b^2=a^2+b^2-2ab+a^2+b^2+2ab=\left(a-b\right)^2+\left(a+b\right)^2\)

b) \(2n\)là số chẵn nên hai số chính phương có tổng là \(2n\)cùng tính chẵn lẻ. 

\(2n=\left(a-b\right)^2+\left(a+b\right)^2\)

\(\Rightarrow n^2=a^2+b^2\)

c) \(n^2=\left(a^2+b^2\right)^2=a^4+2a^2b^2+b^4=a^4-2a^2b^2+b^4+4a^2b^2\)

\(=\left(a^2-b^2\right)^2+\left(2ab\right)^2\)

DD
28 tháng 7 2021

\(10^n=11...1\times9+1\)(\(n\)chữ số \(1\)

a) \(b=9a+1+5=9a+6\)

\(ab+1=a\left(9a+6\right)+1=9a^2+6a+1=\left(3a+1\right)^2\)là số chính phương. 

b) Số đó có dạng: \(A=11...155...5+1\)(\(n\)chữ số \(1\)\(n\)chữ số \(5\)

\(a=11...1\)(\(n\)chữ số \(1\))

\(a=a\left(9a+1\right)+5a+1=9a^2+a+5a+1=9a^2+6a+1=\left(3a+1\right)^2\)là số chính phương. 

30 tháng 12 2015

gọi độ dài cạnh hình vuông là a

=>a^2+a^2=(\(\sqrt{ }\)3)^2

=>2a^2=3

=>a^2=3/2

=>a=\(\sqrt{ }\)3/2