K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2017

\(\frac{a}{a}+\frac{b}{b}=1+1=1\)

Cái gì đang diễn ra, 1 + 1 = 1. (XỈU)

24 tháng 9 2017

Ta có: \(\frac{a}{a'}+\frac{b'}{b}=1\)

\(=>\frac{ab+a'b'}{a'b}=1\)

\(=>ab+a'b'=a'b\left(1\right)\)

Ta lại có:

\(\frac{b}{b'}+\frac{c'}{c}=1\)

\(=>\frac{bc+b'c'}{b'c}=1\)

\(=>bc+b'c'=b'c\)

Nhân (1) cho c, ta được:

\(abc+a'b'c=a'bc\left(3\right)\)

Nhân (2) cho a', ta được:

\(a'bc+a'b'c'=a'b'c\left(4\right)\)

Cộng (3) với (4), ta được: 

\(abc+a'b'c+a'bc+a'b'c'=a'bc+a'b'c\)

\(abc+a'b'c=ab'c+a'b'c-a'b'c-a'bc\)

\(=>abc+a'b'c'=0\left(đpcm\right)\)

25 tháng 9 2017

Ta có : \(\frac{a}{a'}+\frac{b}{b'}=1\) ; \(\frac{b}{b'}+\frac{c}{c'}=1\)

\(\Rightarrow\left(\frac{a}{a'}+\frac{b}{b'}\right)=\left(\frac{b}{b'}+\frac{c}{c'}\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\Rightarrow\frac{a+b-b+c}{a'+b'-b'+c}=\frac{a+1+c}{a'+1+c'}=\frac{a+c}{a'+c'}\)

\(\Rightarrow\frac{a}{a'}=\frac{c}{c'}\)

=> a.c' = a'.c

=> a.c' = a'.c = b.c' = b'.c = a.b' = a'.b

=> abc là số nguyên âm hoặc dương (*)

=> a'b'c' là số nguyên âm hoặc dương (**)

Từ (*) và (**)     

=> -(abc) + a'b'c' = 0 (1)

=> abc+ -(a'b'c') = 0 (2)

Từ (1) và (2) => đpcm

25 tháng 9 2017

Làm chi tiết ra hộ mình

17 tháng 7 2018

Ta có: \(\frac{a}{a'}+\frac{b'}{b}=1\Leftrightarrow\frac{ab+a'b'}{a'b}=1\Leftrightarrow ab+a'b'=a'b\Leftrightarrow abc+a'b'c=a'bc\left(1\right)\)

Lại có: \(\frac{b}{b'}+\frac{c'}{c}=1\Leftrightarrow\frac{bc+b'c'}{b'c}=1\Leftrightarrow bc+b'c'=b'c\Leftrightarrow a'bc+a'b'c'=a'b'c\left(2\right)\)

Từ (1) và (2) => \(abc+a'b'c+a'bc+a'b'c'=a'bc+a'b'c\)

\(\Leftrightarrow abc+a'b'c'=a'bc-a'bc+a'b'c-a'b'c\)

\(\Leftrightarrow abc+a'b'c'=0\left(đpcm\right)\)

20 tháng 1 2020

Mình nghĩ cũng khá khó!

Ta có: \(\frac{a}{a'}+\frac{b'}{b}=1\Leftrightarrow ab+a'b'=a'b\Leftrightarrow abc+a'b'c=a'bc\left(1\right)\)

Ta có: \(\frac{b}{b'}+\frac{c'}{c}=1\Leftrightarrow bc+b'c'\Leftrightarrow a'bc+a'b'c=a'b'c\left(2\right)\)

Từ (1) và (2) \(\Rightarrow abc+a'b'c+a'bc+a'b'c'=a'bc+a'b'c\)

\(\Leftrightarrow abc+a'b'c'=0\left(đpcm\right)\)

đề bài abc=a'+b'+c'=0 nha~~

1 tháng 3 2020

+)Ta có:\(\frac{a}{a^,}+\frac{b^,}{b}=1\) \(\iff\)  \(ab+a^,b^,=a^,b\) \(\iff\) \(abc+a^,b^,c^,=a^,bc\) \(\left(1\right)\)

+)Ta có: \(\frac{b}{b^,}+\frac{c^,}{c}=1\)\(\iff\)  \(bc+b^,c^,=b^,c\) \(\iff\) \(a^,bc+a^,b^,c^,=a^,b^,c\) \(\left(2\right)\)

Cộng (1) với (2) vế với vế ta được :

\(\implies\) \(abc+a^,b^,c^,+a^,bc+a^,b^,c^,=a^,bc+a^,b^,c^,\)

\(\implies\) \(abc+a^,b^,c^,=0\left(đpcm\right)\)

1 tháng 3 2020

+)Ta có:\(\frac{a}{a^,}+\frac{b^,}{b}=1\) \(\iff \) \(ab+a^,b^,=a^,b\) \(\iff \) \(abc+a^,b^,c=a^,bc\left(1\right)\)

+)Ta có:\(\frac{b}{b^,}+\frac{c^,}{c}=1\) \(\iff \) \(bc+b^,c^,=b^,c\)\(\iff \) \(a^,bc+a^,b^,c^,=a^,b^,c\left(2\right)\)

Cộng \(\left(1\right)\) với \(\left(2\right)\) vế với vế ta được:\(abc+a^,b^,c+a^,bc+a^,b^,c^,=a^,bc+a^,b^,c\)

\(\implies\) \(abc+a^,b^,c^,=0\left(đpcm\right)\)

1 tháng 3 2020

Ta có: \(\frac{a}{a^,}+\frac{b^,}{b}=1\) \(\iff\) \(ab+a^,b^,=a^,b\) \(\iff\) \(abc+a^,b^,c=a^,bc\left(1\right)\)

Ta có:\(\frac{b}{b^,}+\frac{c^,}{c}=1\) \(\iff\) \(bc+b^,c^,=b^,c\) \(\iff\) \(a^,bc+a^,b^,c^,=a^,b^,c\left(2\right)\)

Từ\(\left(1\right)\) và \(\left(2\right)\) cộng vế với vế ta được : \(abc+a^,b^,c+a^,bc+a^,b^,c^,=a^,bc+a^,b^,c\)

\(\implies\) \(abc+a^,b^,c^,=0\left(đpcm\right)\)

30 tháng 4 2018

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)\(=\frac{ac}{c\left(ab+a+1\right)}+\frac{abc}{ac\left(bc+b+1\right)}+\frac{c}{ac+c+1}\)

\(=\frac{ac}{abc+ac+c}+\frac{1}{abc^2+abc+ac}+\frac{c}{ac+c+1}=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}\)

\(=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1\)

30 tháng 4 2018

\(abc=1\)

=> \(a=\frac{1}{bc}\)\(c=\frac{1}{ab}\)

Thay \(a=\frac{1}{bc}\)và \(c=\frac{1}{ab}\) vào \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)ta được:

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)\(=\frac{\frac{1}{bc}}{\frac{1}{bc}.b+\frac{1}{bc}+1}+\frac{b}{bc+b+1}+\frac{\frac{1}{ab}}{\frac{1}{bc}.\frac{1}{ab}+\frac{1}{ab}+1}\)

\(=\frac{\frac{1}{bc}}{\frac{b}{bc}+\frac{1}{bc}+\frac{bc}{bc}}+\frac{b}{bc+b+1}+\frac{\frac{1}{ab}}{\frac{1}{ab}\left(\frac{1}{bc}+1\right)+\frac{ab}{ab}}\)

\(=\frac{\frac{1}{bc}}{\frac{bc+b+1}{bc}}+\frac{b}{bc+b+1}+\frac{\frac{1}{ab}}{\frac{1}{ab}\left(\frac{1}{bc}+\frac{bc}{bc}+ab\right)}\)

\(=\frac{\frac{1.bc}{bc}}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{\frac{1}{bc}+\frac{bc}{bc}+\frac{1}{bc}.b}\)

\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{\frac{1}{bc}+\frac{bc}{bc}+\frac{b}{bc}}\)

\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{\frac{bc+b+1}{bc}}\)

\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1.bc}{bc+b+1}\)

\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)

\(=\frac{1+b+bc}{bc+b+1}=\frac{bc+b+1}{bc+b+1}=1\)(đpcm)