Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
hình tự vẽ
Gọi giao điểm của AC và BD là O => O là trung điểm của AC, BD => AO=OC;BO=OD
từ điểm O hạ OO' vuông góc với xy tại O' => OO'//DD' (2 góc đồng vị bằng nhau \(\widehat{OO'y}=\widehat{DD'y}=90^o\))
AO=OC;OO'//DD' => OC là đường trung bình của tứ giác BB'DD' => \(OC=\frac{1}{2}\left(BB'+DD'\right)\)(1)
Mặt khác: BO=OD; OO'//AA' (2 góc đồng vị bằng nhau \(\widehat{OO'y}=\widehat{AA'y}=90^o\))
=>OC là đường trung bình của tam giác AA'C => \(OC=\frac{1}{2}AA'\)(2)
Từ (1) và (2) => \(\frac{1}{2}AA'=\frac{1}{2}\left(BB'+DD'\right)\Leftrightarrow AA'=BB'+DD'\)(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ∆AME = ∆CMB (c-g-c) Þ ÐEAM = ÐBCM
Mà BCM +MBC = 900 => EAM + MBC = 900
=> AHB = 900
Vậy AE vuôn góc BC
b)Gọi O là giao điểm của AC và BD.
∆AHC vuông tại H có HO là đường trung tuyến
=> HO = \(\frac{1}{2}\)AC = \(\frac{1}{2}\)DM
=>∆DHM vuông tại H
=>DHM = 900
Chứng minh tương tự ta có: MHF = 900
Suy ra: DHM + MHF = 1800
Vậy ba điểm D, H, F thẳng hàng.
![](https://rs.olm.vn/images/avt/0.png?1311)
Key t chụp ở Câu hỏi của Lưu Đức Mạnh - Toán lớp 8 - Học toán với OnlineMath.Còn hình vẽ là t vẽ nha.câu c đang nghĩ~~~
C,Gọi G là giao điểm của AC và BE
=> \(AG\perp BE\) (C là trực tâm tam giác ABE)
Lại có Góc GAB= Góc GBA = 45 độ
=> tam giác ABG vuông cân
Mà A,B cố định
=> G cố định
CMTT câu b => D;F;G thẳng hàng
=> DF luôn đi qua điểm G cố định khi M di động trên AB
Vậy DF luôn đi qua điểm G cố định khi M di động trên AB
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn tự vẽ hình
a)*ta có M là trung điểm của AB
N là trung điểm của BC
Suy ra: MN là đường trung bình của tam giác ABC
*ta có N là trung điểm của BC
P là trung điểm của DC
Suy ra : NP là đường trung bình của tam giác BCD
b)ta có Q là trung điểm của AD
P là trung điểm của DC
Suy ra PQ là đường trung bình của tam giác ADC
=>PQ song song với AC;PQ=\(\frac{AC}{2}\)
mà MN song song với AC;MN=\(\frac{AC}{2}\)(MN là đường trung bình của tam giác ABC)
nên: PQ song song MN;PQ=MN
Suy ra MNPQ là hình binh hành(1)
ta lại có : AD=BC(ABCD là hình thang cân)
=>AQ=BN=QD=NC(Q,N lần lượt là trung điểm của AD,BC)
Xét tam giác MNB và tam giác MQA
BN=AQ (chứng minh trên)
MB=MA(M là trung điểm của AB)
góc MAQ=góc MBN
Suy ra tam giác MNB=tam giác MQA(c-g-c)
=>MQ=MN( 2 cạnh tương ứng )(2)
Từ (1) và (2) suy ra :
MNPQ là hình thoi
=> MP vuông góc NQ
![](https://rs.olm.vn/images/avt/0.png?1311)
a) xét tam giác BAD ta có:
M là trung điểm AB (gt)
F là trung điểm BD (gt)
vậy MF là đường trung bình tam giác BAD
=>MF//AD và MF=1/2 AD (1)
xét tam giác ADC ta có:
P là trung điểm CD (gt)
E là trung điểm AC (gt)
vậy PE là đường trung bình tam giác ADC
=>PE//AD và PE=1/2 AD (2)
từ (1) và (2) => PE//MF và PE=MF=1/2 AD
tương tự như vậy với ME và PF ta có được ME//PF và ME=PF=1/2 BC
ta có:
ME=PF=1/2 BC (cmt)
MF=PE=1/2 AD (cmt)
AD=BC (gt)
vậy ME=PF=MF=PE
=>MEPF là hình thoi
b) vẽ tứ giác MQPN. gọi giao điểm QN và MP là K
xét tam giác ABD ta có:
Q là trung điểm AD (gt)
M là trung điểm AB (gt)
vậy MQ là đường trung bình tam giác ABD
=> MQ//BD và MQ=1/2 BD (1)
xét tam giác CBD ta có:
P là trung điểm CD (gt)
N là trung điểm BC (gt)
vậy PN là đường trung bình tam giác CBD
=> PN//BD và PN=1/2 BD (2)
từ (1) và (2)=> PN//MQ và PN=MQ
=>MQPN là hình bình hành
mà QN và MP là hai đường chéo và K là giao điểm
=>K là trung điểm của QN và MP (3)
xét hình thoi MEPF ta có:
MP và EF là hai đường chéo
K là trung điểm MP (cmt)
=> K là trung điểm EF (4)
từ (3) và (4)=> QN,MP,EF đồng quy tại K.
mình làm cách này nhé:
gọi O, I là giao 2 đường chéo của hv ABCD và A'B'C'D'
ta có :
PO//=MI
QO//=IN
suy ra tam giác POQ= tam giác MIN (c-g-c)
tương tự PON=MIQ(c-g-c)
từ đó lấy góc và cạnh sẽ được