Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Đa thức biểu thị diện tích phần tăng thêm của miếng bìa là:
\(\dfrac{1}{2}\cdot\left(6+x\right)\cdot\left(8+y\right)-\dfrac{1}{2}\cdot6\cdot8\)
\(=\dfrac{1}{2}\cdot\left(48+6y+8x+xy\right)-3\cdot8\)
\(=24+3y+4x+\dfrac{xy}{2}-24\)
\(=3y+4x+\dfrac{xy}{2}\)
b) Phần diện tích tăng thêm là:
\(3\cdot4+4\cdot2+\dfrac{2\cdot4}{2}=24\left(cm^2\right)\)
a) Diện tích tam giác sau khi tăng thêm:
(6 + x).(8 + y) : 2
= (48 + 6y + 8x + xy) : 2
= 24 + 3y + 4x + xy/2
Diện tích phần tăng thêm:
24 + 3y + 4x + xy/2 - 6.8:2
= 4x + 3y + xy/2 (cm)²
b) Khi x = 2 và y = 4 thì diện tích phần tăng thêm là:
4.2 + 3.4 + 2.4/2
= 8 + 12 + 4
= 24 (cm²)
![](https://rs.olm.vn/images/avt/0.png?1311)
Diện tích hình tam giác vuông ban đầu là: \(\dfrac{1}{2}.6.8 = 24\left( {c{m^2}} \right)\)
Độ dài các cạnh của hình vuông sau khi tăng độ dài là: x + 6 (cm); y + 8 (cm)
Diện tích tam giác vuông sau khi tăng độ dài là: \(\dfrac{1}{2}\left( {x + 6} \right).\left( {y + 8} \right) = \dfrac{{{xy}}}{2} + 4x + 3y + 24\left( {c{m^2}} \right)\)
Đa thức biểu thị phần diện tích tăng thêm của miếng bìa là: \(\dfrac{{{xy}}}{2} + 4x + 3y + 24 - 24 = \dfrac{{{xy}}}{2} + 4x + 3y\left( {c{m^2}} \right)\)
Vậy đa thức biểu thị phần diện tích tăng thêm của miếng bìa là: \(\dfrac{{{xy}}}{2} + 4x + 3y\left( {c{m^2}} \right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 4:
1)
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
b) Xét ΔABC có AH là đường cao ứng với cạnh huyền BC, ta có:
\(S_{ABC}=\dfrac{AH\cdot BC}{2}\)(1)
Ta có: ΔABC vuông tại A(gt)
nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}\)(2)
Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)
c) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=12^2+16^2=400\)
hay BC=20(cm)
Ta có: \(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot20=12\cdot16=192\)
hay AH=9,6(cm)
Bài 3:
Gọi x(cm) là độ dài cạnh góc vuông nhỏ(Điều kiện: x>0)
Độ dài cạnh góc vuông lớn là: x+2(cm)
Theo đề, ta có phương trình:
\(\dfrac{\left(x-3\right)\left(x+2+4\right)}{2}=\dfrac{x\left(x+2\right)}{2}+30\)
\(\Leftrightarrow\left(x-3\right)\left(x+6\right)=x\left(x+2\right)+30\)
\(\Leftrightarrow x^2+3x-18-x^2-2x=30\)
\(\Leftrightarrow x-18=30\)
hay x=48(thỏa ĐK)
Vậy: Chu vi của tam giác vuông đó là:\(98+2\sqrt{1201}\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
3\(a^2\)+4a+1=3\(a^2\)+3a+a+1
=(3\(a^2\)+3a)+(a+1)
=3a(a+1)+(a+1)
=(a+1)(3a+1)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng Pytago: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
Vì AM là tt ứng cạnh huyền BC nên \(AM=\dfrac{1}{2}BC=5\left(cm\right)\)
Diện tích tam giác vuông miếng bìa cứng sau khi tăng là :
\(\left(x+6\right)\left(8+y\right)\left(cm^2\right)\)
Đa thức biểu thị diện tích phần tăng thêm của miếng bìa :
\(\left(x+6\right)\left(8+y\right)-6.8\)
\(=8x+xy+48+6y-48\)
\(=8x+6y+xy\left(cm^2\right)\)