Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn A.
Lời giải.
Không gian mẫu là số cách chọn 2 phần thưởng trong số 12 phần thưởng
Suy ra số phần tử của không gian mẫu là Ω = C 12 2 = 66
Gọi A là biến cố ""Bạn An và bạn Bình có phần thưởng giống nhau"".
Để tìm số phần tử của A, ta làm như sau
Gọi x là cặp số gồm 2 quyển Toán và Vật Lí
y là số cặp gồm 2 quyển Toán và Hóa Học;
z là số cặp gồm 2 quyển Vật Lí và Hóa Học
Ta có hệ phương trình
Suy ra số phần tử của biến cố A là
Ω A = C 3 2 + C 4 2 + C 5 2
Vậy xác suất cần tính P ( A ) = 19 66

Đáp án D
Ta chia số phần thưởng đó thành 3 bộ Toán Lý, 4 bộ Toán Hóa và 5 bộ Hóa Lý.
Như vậy, có C 12 2 cách chọn giải thưởng cho An và Bình
Trong đó, cách chọn số bộ Toán Lý là C 3 2 , cách chọn số bộ Toán Hóa là C 3 2 , cách chọn số bộ Hóa Lý là C 4 2
Do đó, xác suất là

Đáp án D
Ta chia số phần thưởng đó thành 3 bộ Toán Lý, 4 bộ Toán Hóa và 5 bộ Hóa Lý.
Như vậy, có C 12 2 cách chọn giải thưởng cho An và Bình.
Trong đó, cách chọn số bộ Toán Lý là C 3 2
cách chọn số bộ Toán Hóa là C 4 2
cách chọn số bộ Hóa Lý là C 5 2 .
Do đó, xác suất là

Để xác định, ba bạn được đánh số 1, 2, 3.
Kí hiệu A i là tập hợp các cách cho mượn mà bạn thứ i được thầy giáo cho mượn lại cuốn đã đọc lần trước (i = 1, 2, 3)
Kí hiệu X là tập hợp các cách cho mượn lại.
Theo bài ra cần tính
n [ X \( A 1 ∪ A 2 ∪ A 3 ) ]
Tacó:
n ( A 1 ∪ A 2 ∪ A 3 ) = n ( A 1 ) + n ( A 2 ) + n ( A 3 ) − n ( A 1 ∪ A 2 ) − n ( A 1 ∪ A 3 ) − n ( A 2 ∪ A 3 ) + n ( A 1 ∩ A 2 ∩ A 3 ) = 2 ! + 2 ! + 2 ! − 1 − 1 − 1 + 1 = 4 n ( X ) = 3 ! = 6
Từ đó n [ X \( A 1 ∪ A 2 ∪ A 3 ) ] = 6 - 4 = 2

Lời giải:
Chọn 4 quyển sách khác nhau đủ 3 loại, có các TH sau:
TH1: 1 toán, 1 lý, 2 hóa: $A_1=C^1_6.C^1_7.C^2_8$ cách
TH2: 2 toán, 1 lý, 1 hóa: $A_2=C^2_6.C^1_7.C^1_8$ cách
TH3: 1 toán, 2 lý, 1 hóa: $A_3=C^1_6.C^2_7.C^1_8$ cách
Tổng số cách: $A_1+A_2+A_3=3024$ cách

Số cách chọn 3 quyển sách văn là \(C^3_4=4\).
Số cách chọn 3 quyển sách anh là \(C^3_5=10\).
a, Số cách sắp xếp vào 1 kệ dài là \(9!.4.10=14515200\) cách.
b, Coi số sách mỗi loại là một phần tử.
Số cách sắp xếp thỏa mãn yêu cầu bài toán là \(3!.4.10=240\) cách.
Nguyễn Việt Lâm giups mk vss bn....