Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Số hàng dọc nhiều nhất có thể xếp được là ƯCLN(24, 28, 36)
Ta có:
24 = 23.3
28 = 22.7
36 = 22.32
Ta thấy 2 là thừa số nguyên tố chung của 24; 28 và 36. Số mũ nhỏ nhất của 2 là 2nên \(ƯCLN(24, 28, 36) =2^2 = 4\)
Vậy có thể xếp được nhiều nhất 4 hàng dọc.
![](https://rs.olm.vn/images/avt/0.png?1311)
gọi số đội nhiều nhất có thể là x
có 24 ⋮ x ; 28 ⋮ x ; 36 ⋮ x
=>x ∈ƯC(24;28;36)
mà ƯC(24;28;36)={1;2;4}
=>x∈{1;2;4}
mà x lớn nhất
=> x=4
Vậy số hàng dọc nhiều nhất là 4
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: 33 = 3 . 11
Vì xếp 33 chiến sĩ thành các hàng thì số hàng là ước của 33
Ư(33) = {1; 3; 11; 33}
Với số hàng là 1 thì số người mỗi hàng là: 33 : 1 = 33 (người)
Với số hàng là 3 thì số người mỗi hàng là: 33 : 3 = 11 (người)
Với số hàng là 11 thì số người mỗi hàng là: 33 : 11 = 3 (người)
Với số hàng là 33 thì số người mỗi hàng là: 33 : 33 = 1 (người)
Vậy có 4 cách cách sắp xếp 33 chiến sĩ thành các hàng.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số chiến sĩ cần tìm của đơn vị bộ đội đó là x
( sẽ có những dấu bạn tự viết dấu chia hết nhé mik ko bt viết trên máy tính nên ko ghi đc )
x chia hết cho 25 , x chia hết cho 30 , x chia hết cho 35
=> x thuộc BC(25,30,35)
25 = 5 mũ 2
30 = 2.3.5
35 = 5.7
BCNN(25,30,35)=5 mũ 2 .3.2.7=1050
x thuộc BC(25,30,35)=B(1050)=1050, vì 1000 <bằng x <bằng x 1400
vậy x= 1050
số chiến sĩ
cần tìm của đơn vị bộ đội đó là 1050
![](https://rs.olm.vn/images/avt/0.png?1311)
Đế sắp xếp 33 chiến sĩ thành các hàng có số người như nhau thì số hàng phải là ước lớn hơn 1 của 33.
Ta có: 33 = 3.11
Các cách sắp xếp 33 chiến sĩ là:
+) 11 hàng mỗi hàng 3 người
+) 3 hàng mỗi hàng 11 người
Vậy có 2 cách sắp xếp.
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Gọi số chiến binh của đơn vị là $a$ (người).
Theo bài ra ta có:
$320< a< 400$
$a\vdots 15,20,25$
$\Rightarrow a=BC(15,20,25)$
$\Rightarrow a\vdots BCNN(15,20,25)$
$\Rightarrow a\vdots 300$
$\Rightarrow a\in \left\{300; 600; 900;...;\right\}$
Mà $320< a< 400$ nên không có số nào thỏa mãn.
Gọi số chiến binh của đơn vị bộ đội đó cần tìm là x(điều kiện: chiến binh, x ϵ N*), theo đề bài, ta có:
\(x⋮15\\ x⋮20\\ x⋮25\\ 320< x< 400\)
⇒ \(x\in BC\left(15,20,25\right)\\ 320< x< 400\)
Ta có:
15 = 3.5
20 = 22.5
25 = 52
⇒ BCNN(15,20,25) = 22.3.52 = 300
⇒ BC(15,20,25) = B(300) = {0;300;600;900}
Mà 320 < x < 400 ⇒ không có số x thỏa mãn đề bài.
111111111111211
NHẮN CẨN THẬN DÙM TUI ĐC KO