K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2020

bài 4 : c1 \(3^{4000}\)và \(9^{2000}\)

\(\Leftrightarrow9^{2000}\Leftrightarrow\left(3^2\right)^2^{000}\Leftrightarrow3^{4000}\)

vì \(3^{4000}=3^{4000}\Leftrightarrow3^{4000}=9^{2000}\)

c2 

ta có 

\(3^{4000}=\left(3^4\right)^{1000}=81^{1000}\)

\(9^{2000}=\left(9^2\right)^{1000}=81^{1000}\)

vì \(81^{1000}=81^{1000}\Leftrightarrow3^{4000}=9^{2000}\)

bài 5 

\(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)

\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)

vì \(8^{111}< 9^{111}\Leftrightarrow2^{332}< 3^{223}\)

17 tháng 8 2020

3) M = 22010 - (22009 + 22008 + ....  + 21 + 20)

Đặt N = 22009 + 22008 + ....  + 21 + 20

=> 2N = 22010 + 22009 + .... + 22 + 21

=> 2N - N = (22010 + 22009 + .... + 22 + 21) - (22009 + 22008 + ....  + 21 + 20)

=> N = 22010 - 1

Khi đó M = 22010 - (22010 - 1) = 1

4) C1 Ta có 34000 = (34)1000 = 811000 = (92)1000 = 92000 

34000 = 92000

C2 Ta có : 34000 = (34)1000 = 811000 (1)

Lại có 92000 = (92)1000 = 811000 (2)

Từ (1) (2) => 34000 = 92000

5 Ta có 2332 < 2333 = (23)111 = 8111 < 9111 = (32)111 = 3222 < 3223

=> 2332 < 3223

2) Ta có n150 < 5225

=> (n5)75 < (53)75

=> n5 < 53

=> n5 < 125

Vì n là số nguyên lớn nhất => n = 2

25 tháng 6 2016

Bài 1: B = 1 + 2 + 3 + ... + 98 + 99

Số số hạng:

(99 - 1) + 1 = 99 (số hạng)

Tổng trên là:

(99 + 1) . (98 : 2) + 50 = 4950

Bài 2: C = 1 + 3 + 5 + ... + 997 + 999

Số số hạng:

(999 - 1) : 2 +1 = 500 (số hạng)

Tổng trên là:

(999 + 1) . (500 : 2) = 250 000

Bài 3. D = 10 + 12 + 14 + ... + 994 + 996 + 998

Số số hạng:

(998 - 10) : 2 + 1 = 495 (số hạng)

Tổng trên là:

(998 + 10) . (494 : 2) + 248 = 249 224

25 tháng 6 2016

Bài 1: Tính B = 1 + 2 + 3 + ... + 98 + 99

B = 1 + (2 + 3 + 4 + ... + 98 + 99).

Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:

(2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949

Khi đó B = 1 + 4949 = 4950

Ta có thể tính tổng B theo cách khác như sau:

Các dạng toán nâng cao lớp 7

Bài 2: Tính C = 1 + 3 + 5 + ... + 997 + 999

Từ 1 đến 1000 có 500 số chẵn và 500 số lẻ nên tổng trên có 500 số lẻ. Áp dụng các bài trên ta có C = (1 + 999) + (3 + 997) + ... + (499 + 501) = 1000.250 = 250.000 (Tổng trên có 250 cặp số)

Bài 3. Tính D = 10 + 12 + 14 + ... + 994 + 996 + 998

Ta có:

10 = 2.4 + 2

12 = 2.5 + 2

14 = 2.6 + 2

...

998 = 2 .498 + 2

Tương tự bài trên: từ 4 đến 498 có 495 số nên ta có số các số hạng của D là 495, mặt khác ta lại thấy:  495 = (998 - 10)/2 + 1 hay số các số hạng = (số hạng đầu - số hạng cuối) : khoảng cách rồi cộng thêm 1

Khi đó ta có:

 D = 10 + 12 = ... + 996 + 998

+D = 998 + 996  ... + 12 + 10

 

 2D = 1008  1008 + ... + 1008 + 1008

2D = 1008.495 → D = 504.495 = 249480

Thực chất  D = (998 + 10).495 / 2

Qua các ví dụ trên, ta rút ra một cách tổng quát như sau: Cho dãy số cách đều u1, u2, u3, ... un (*), khoảng cách giữa hai số hạng liên tiếp của dãy là d.

Khi đó số các số hạng của dãy (*) là: 

Tổng các số hạng của dãy (*) là: 

Đặc biệt từ công thức (1) ta có thể tính được số hạng thứ n của dãy (*) là: un = u1 + (n - 1)d
Hoặc khi u1 = d = 1 thì 

26 tháng 10 2018

\(2^{225}=\left(2^3\right)^{75}=8^{75}< 9^{75}=\left(3^2\right)^{75}=3^{150}\)

\(2^{2009}+2^{2008}+.......+2+1=b\)

\(\Rightarrow2b=2^{2010}+2^{2009}+.........+2^2+2\)

\(\Rightarrow2b-b=2^{2010}-1\Rightarrow b=2^{2010}-1\)

\(\Rightarrow A=2^{2010}-b=2^{2010}-\left(2^{2010}-1\right)=1\)

30 tháng 11 2016

Giá trị x cần tìm là -0,7

Bài 1:

\(\Leftrightarrow\left(2x-1\right)^6-\left(2x-1\right)^4=0\)

=>2x(2x-1)(2x-2)=0

hay \(x\in\left\{0;\dfrac{1}{2};1\right\}\)

Bài 3: 

\(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)

\(\Leftrightarrow\dfrac{a-5+10}{a-5}=\dfrac{b-6+12}{b-6}\)

\(\Leftrightarrow\dfrac{10}{a-5}=\dfrac{12}{b-6}\)

\(\Leftrightarrow\dfrac{a-5}{5}=\dfrac{b-6}{6}\)

\(\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{6}\)

hay a/b=5/6

3 tháng 12 2019

1) So sánh

Ta có : 224 = 23.8 = (23)8 = 88

           316 = 32.8 = (32)8 = 98

Vì 88 < 98

=>  224 < 316 

2) Tính

\(\left(0,25\right)^4.1024=\left(\frac{1}{4}\right)^4.1024=\frac{1}{4^4}.2^{10}=\frac{1}{\left(2^2\right)^4}.2^{10}=\frac{1}{2^8}.2^{10}=\frac{2^{10}}{2^8}=2^2=4\)

3) Tìm x nguyên

(x - 1)x + 2 = (x - 1)x + 6

=> (x - 1)x + 6 - (x - 1)x + 2 = 0

=> (x - 1)x + 2.[(x - 1)4 - 1] = 0

=> \(\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^4-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^4=1^4\end{cases}\Rightarrow}\orbr{\begin{cases}x-1=0\\x-1=\pm1\end{cases}}}\)

Nếu x - 1 = 0 => x = 1(tm)

Nếu x - 1 = - 1 => x = 0(tm)

Nếu x - 1 = 1 => x = 2(tm)

Vậy \(x\in\left\{1;0;2\right\}\)

3 tháng 12 2019

Bài 1:Ta có:

2^24=2^(6.4)=64^4

3^16=3^(4.4)=81^4

Bài 2.Ta có:

(0.25)^4=1/4.1/4.1/4.1/4=1/256

=>1/256.1024=4

Bài 3:

Ta có:(x-1)^(x+2)=(x-1)^(x+6)

Chia hai vế cho (x-1)^(x+2),do đó:

1=(x-1)^(x+4)

<=>x-1=1

<=>x=2

Hoặc chia hai vế cho (x-1)^(x+6)

(x-1)^(x-4)=1

<=>x-1=1

<=>x=2

20 tháng 6 2017

mk chỉ biết câu a thôi

\(-3+\frac{1}{3}\)=\(\frac{-3}{1}\)+\(\frac{1}{3}\)\(\frac{-9}{3}\)+\(\frac{1}{3}\)=\(\frac{-8}{3}\)

19 tháng 6 2017

Bài 1:

\(\frac{-8}{3}\)

\(\frac{-9}{4}\)

\(\frac{-42}{19}\)

Bài 2:

A = \(\frac{3}{7}\)

 Ai thấy mình đúng tk nha !

10 tháng 7 2019

B1:

Ta có: a - b = ab => a = ab + b = b(a + 1)

Thay a = b(a + 1) vào a  - b  = a : b ta có: \(a-b=\frac{b\left(a+1\right)}{b}=a+1\)

=> a - b = a + 1 => a - a - b = 1 => -b = 1 => b = -1 

Lại có: ab = a - b

<=> a x (-1) = a - (-1) <=> -a = a + 1 <=> -a - a = 1 <=> -2a = 1 <=> a = -1/2

Vậy...

B2:

a, \(3y\left(y-\frac{2}{5}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3y=0\\y-\frac{2}{5}=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=\frac{2}{5}\end{cases}}}\)

b, \(7\left(y-1\right)+2y\left(y-1\right)=0\)

\(\Rightarrow\left(y-1\right)\left(7+2y\right)=0\)

\(\Rightarrow\orbr{\begin{cases}y-1=0\\7+2y=0\end{cases}\Rightarrow}\orbr{\begin{cases}y=1\\2y=7\end{cases}\Rightarrow}\orbr{\begin{cases}y=1\\y=\frac{7}{2}\end{cases}}\)

B3: \(K=\frac{-2}{3}+\frac{3}{4}-\frac{-1}{6}+\frac{-2}{5}\)

\(K=\left(-\frac{2}{3}+\frac{1}{6}\right)+\left(\frac{3}{4}-\frac{2}{5}\right)\)

\(K=\left(\frac{-4}{6}+\frac{1}{6}\right)+\left(\frac{15}{20}-\frac{8}{20}\right)\)

\(K=\frac{-1}{2}+\frac{7}{20}=\frac{-10}{20}+\frac{7}{20}=\frac{-3}{20}\)