Bài 6: Cho tam giác ABC cân tại A. Trên tia đối của tia...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đói của tia CB lấy điểm E sao cho BD=CE. Kẻ BH vuông góc AD, CK vuồn góc AE(H thuộc AD; K thuộc AE). 2 đường thẳng HB và KC cắt nhau tại O. CMR:a)tam giác ADE cân b)tam giác BOC cân c)OA là tia phân giác của góc BOC2.Cho điểm M nằm giữa 2 điểm A và B. Trên cùng 1 nửa mặt phẳng bờ AB vẽ các tam giác đều AMC và BMD. Gọi E và F theo...
Đọc tiếp

1. Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đói của tia CB lấy điểm E sao cho BD=CE. Kẻ BH vuông góc AD, CK vuồn góc AE(H thuộc AD; K thuộc AE). 2 đường thẳng HB và KC cắt nhau tại O. CMR:

a)tam giác ADE cân

b)tam giác BOC cân

c)OA là tia phân giác của góc BOC

2.Cho điểm M nằm giữa 2 điểm A và B. Trên cùng 1 nửa mặt phẳng bờ AB vẽ các tam giác đều AMC và BMD. Gọi E và F theo thứ tự là trung điểm của AD và BC. CMR:

a) tam giác AMD=tam giác CMB

 b) tam giác MEF đều

3.Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho AM+AN=2AB.

a) CMR BM=CN

b) Đường trung trực của MN và tia phân giác của BAC cắt nhau tại K. CM: tam giác BKM= tam giác CKN. Từ đó suy ra K thuộc AN

0
17 giờ trước (10:47)

a: Xét ΔBAD và ΔBED có

BA=BE

\(\hat{ABD}=\hat{EBD}\) (BD là phân giác của góc ABE)

BD chung

Do đó: ΔBAD=ΔBED

=>DA=DE

b: ΔBAD=ΔBED

=>\(\hat{BAD}=\hat{BED}\)

=>\(\hat{BED}=90^0\)

=>DE⊥BC

mà AH⊥BC

nên DE//AH

c: Xét ΔMHA và ΔMDK có

MH=MD

\(\hat{MHA}=\hat{MDK}\) (hai góc so le trong, HA//DK)

HA=DK

Do đó: ΔMHA=ΔMDK

=>\(\hat{HMA}=\hat{DMK}\)

\(\hat{HMA}+\hat{AMD}=180^0\) (hai góc kề bù)

nên \(\hat{AMD}+\hat{DMK}=180^0\)

=>A,M,K thẳng hàng

15 giờ trước (12:59)

Chúng ta sẽ giải từng câu hỏi trong bài toán này.

Câu a) Chứng minh ∆ABD = ∆EBD và AD = ED

  • Điều kiện:
    • ∆ABC vuông tại A (AB < AC).
    • Tia phân giác của góc B cắt AC tại D.
    • Trên cạnh BC lấy điểm E sao cho BE = BA.
    • Vẽ AH BC tại H.
  • Chứng minh:
  1. Xét các tam giác ∆ABD và ∆EBD:
    Vậy, theo Tiêu chuẩn góc-cạnh-góc (Axiom SAS), ta có:
    \(\Delta A B D = \Delta E B D\)
    • Cả hai tam giác ∆ABD và ∆EBD có cạnh chung BD.
    • AB = BE (do đề bài cho BE = BA).
    • Góc ABD = Góc EBD (vì tia BD là tia phân giác của góc ABC, nên hai góc này bằng nhau).
  2. Kết luận AD = ED:
    • Do ∆ABD = ∆EBD (theo chứng minh trên), nên các cạnh tương ứng của hai tam giác này cũng bằng nhau.
    • Vậy, AD = ED.

Câu b) Chứng minh AH // DE

  1. Xét đoạn AH và DE:
    • Từ điều kiện bài toán, chúng ta có điểm H là giao điểm của đường vuông góc AH với cạnh BC, tức là AH ⊥ BC.
    • Tia DE được dựng sao cho DE là một đoạn thẳng trong cùng một mặt phẳng với BC, và điểm D là điểm phân giác của góc B.
  2. Chứng minh AH // DE:
    • Vì ∆ABD = ∆EBD (chứng minh ở câu a) nên các góc tương ứng của hai tam giác này cũng bằng nhau. Đặc biệt, ∠BAD = ∠BED.
    • Ta có AH ⊥ BC và ∠BAD = ∠BED. Do đó, theo tính chất của góc tạo thành giữa đường vuông góc và đoạn thẳng, ta suy ra rằng AH // DE.

Câu c) Chứng minh A, M, K thẳng hàng

  1. Định nghĩa các điểm:
    • Trên tia DE, lấy điểm K sao cho DK = AH.
    • M là trung điểm của DH, tức là:
      \(\text{DM} = \text{MH}\)
  2. Chứng minh A, M, K thẳng hàng:
    • Ta đã biết rằng AH // DE, và từ câu b) đã chứng minh rằng AH và DE song song.
    • M là trung điểm của DH, tức là DM = MH. Đồng thời, ta có DK = AH (theo giả thiết).
    • Vì AH // DE và M là trung điểm của DH, ta có thể sử dụng tính chất của các đường trung tuyến trong tam giác vuông để suy ra rằng các điểm A, M, K nằm trên cùng một đường thẳng.

Kết luận:

  1. a) ∆ABD = ∆EBD và AD = ED.
  2. b) AH // DE.
  3. c) A, M, K thẳng hàng.

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

=>ΔABD=ΔACE

=>AD=AE

b: 

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE

góc D=góc E

=>ΔBHD=ΔCKE

=>góc HBD=góc KCE

=>góc IBC=góc ICB

=>ΔIBC cân tại I

c: Xét ΔABI và ΔACI có

AI chung

AB=AC

BI=CI

=>ΔABI=ΔACI

=>góc BIA=góc CIA

=>IA là phân giác của góc BIC

a: Xét ΔAHB và ΔAHC có

AB=AC
\(\hat{HAB}=\hat{HAC}\)

AH chung

Do đó: ΔAHB=ΔAHC

=>\(\hat{AHB}=\hat{AHC}\)

\(\hat{AHB}+\hat{AHC}=180^0\) (hai góc kề bù)

nên \(\hat{AHB}=\hat{AHC}=\frac{180^0}{2}=90^0\)

=>AH⊥BC tại H

b: ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của BC

Xét ΔABC có

AH,BD là các đường trung tuyến

AH cắt BD tại G

Do đó: G là trọng tâm của ΔABC

=>\(AG=\frac23AH=\frac23\cdot6=4\left(\operatorname{cm}\right)\)

c: Ta có: HK//AC

=>\(\hat{KHB}=\hat{ACB}\) (hai góc đồng vị)

\(\hat{KBH}=\hat{ACB}\) (ΔABC cân tại A)

nên \(\hat{KBH}=\hat{KHB}\)

=>KB=KH

Ta có: HK//AC

=>\(\hat{KHA}=\hat{HAC}\) (hai góc so le trong)

\(\hat{HAC}=\hat{KAH}\) (AH là phân giác của góc BAC)

nên \(\hat{KHA}=\hat{KAH}\)

=>KH=KA

mà KB=KH

nên KA=KB

=>K là trung điểm của AB

Xét ΔABC có

K là trung điểm của AB

G là trọng tâm

Do đó: C,G,K thẳng hàng

26 tháng 8

a) Chứng minh rằng tam giác AHB = tam giác AHC và AH vuông góc với BC

✳️ Dữ kiện:

  • Tam giác ABC cân tại A ⇒ \(A B = A C\)
  • \(A H\) là phân giác ⇒ \(\hat{B \hat{A} H} = \hat{C \hat{A} H}\)

✳️ Xét 2 tam giác \(\triangle A H B\) và \(\triangle A H C\):

So sánh:

  • \(A B = A C\) (do tam giác cân tại A)
  • \(\hat{B \hat{A} H} = \hat{C \hat{A} H}\)(do \(A H\) là phân giác)
  • Cạnh chung: \(A H\)

✅ Suy ra:

\(\triangle A H B = \triangle A H C (\text{c}-\text{g}-\text{c})\)


✳️ Suy ra: \(H B = H C\) và \(\hat{A H B} = \hat{A H C}\)

→ Mà \(H B = H C\), nên \(H\) cách đều \(B\) và \(C\)

⇒ \(A H\) là đường phân giác đồng thời là trung tuyến trong tam giác cân

→ Trong tam giác cân, đường phân giác ứng với đỉnh cân còn là đường cao

✅ Vậy \(A H \bot B C\)


b) Điểm D là trung điểm của AC, BD cắt AH tại G. Biết AH = 6cm. Tính AG

✳️ Dữ kiện:

  • \(D\): trung điểm của \(A C\)
  • \(B D\) cắt \(A H\) tại \(G\)
  • \(\triangle A B C\) cân tại A ⇒ \(A B = A C\)
  • Mà \(D\): trung điểm của \(A C\) ⇒ không đối xứng hoàn toàn, nhưng vẫn đủ điều kiện dùng định lý Menelaus hoặc định lý trọng tâm nếu phù hợp

→ Tuy nhiên, vì:

  • \(D\) là trung điểm \(A C\)
  • \(A B = A C\) ⇒ \(B\) đối diện với cạnh có điểm trung điểm
  • Áp dụng định lý trung tuyến, trong tam giác \(A B C\), khi nối đỉnh \(B\) với trung điểm \(D\) của \(A C\), thì:

\(\text{Giao}\&\text{nbsp};đ\text{i}ể\text{m}\&\text{nbsp};\text{c}ủ\text{a}\&\text{nbsp}; B D \&\text{nbsp};\text{v}ớ\text{i}\&\text{nbsp}; A H \&\text{nbsp};(\text{trong}\&\text{nbsp};\text{tam}\&\text{nbsp};\text{gi} \overset{ˊ}{\text{a}} \text{c}\&\text{nbsp};\text{c} \hat{\text{a}} \text{n}\&\text{nbsp};\text{c} \overset{ˊ}{\text{o}} \&\text{nbsp};\text{AH}\&\text{nbsp};\text{l} \overset{ˋ}{\text{a}} \&\text{nbsp};đườ\text{ng}\&\text{nbsp};\text{cao}) \Rightarrow G \&\text{nbsp};\text{l} \overset{ˋ}{\text{a}} \&\text{nbsp};\text{tr}ọ\text{ng}\&\text{nbsp};\text{t} \hat{\text{a}} \text{m}\&\text{nbsp};\text{c}ủ\text{a}\&\text{nbsp}; \triangle A B C\)

✳️ Vậy \(G\) là trọng tâm của tam giác \(A B C\)

⇒ Trong tam giác, trọng tâm chia đường trung tuyến theo tỉ lệ:

\(A G : G H = 2 : 1\)

→ \(A H = A G + G H = 3 p h \overset{ˋ}{\hat{a}} n\)

→ \(A G = \frac{2}{3} \cdot A H = \frac{2}{3} \cdot 6 = \boxed{4 \&\text{nbsp};\text{cm}}\)


c) Từ điểm H kẻ đường thẳng song song với AC cắt AB tại K. Chứng minh ba điểm C, G, K thẳng hàng

✳️ Dữ kiện:

  • \(H K \parallel A C\)\(K \in A B\)
  • G là giao điểm của \(A H\) và \(B D\)
  • D là trung điểm của \(A C\)

✳️ Ý tưởng:

Ta sẽ sử dụng định lý Talet hoặc đồng dạng tam giác

✳️ Phân tích:

Vì \(H K \parallel A C\), và \(H \in A H\)\(K \in A B\), nên:

\(\triangle H A K sim \triangle C A C \left(\right. đ \overset{ˋ}{\hat{\text{o}}} \text{ng}\&\text{nbsp};\text{d}ạ\text{ng}\&\text{nbsp};\text{do}\&\text{nbsp};\text{g} \overset{ˊ}{\text{o}} \text{c}\&\text{nbsp};-\&\text{nbsp};\text{g} \overset{ˊ}{\text{o}} \text{c} \left.\right)\)

Mặt khác, trong tam giác \(A B C\), ta có:

  • \(D\) là trung điểm của \(A C\)
  • \(B D\) cắt \(A H\) tại \(G\) (đã biết)
  • Kẻ \(H K \parallel A C\), cắt \(A B\) tại \(K\)

→ Xét hình thang \(K H C A\), có \(H K \parallel A C\)

Kết luận quan trọng:

  • Đường thẳng đi qua \(H\) song song với \(A C\) cắt \(A B\) tại \(K\)
  • Khi đó, do cấu trúc cân, trung điểm, trọng tâm → ta có thể chứng minh 3 điểm \(C , G , K\) thẳng hàng bằng định lý Menelaus đảo hoặc dùng tỉ lệ đoạn thẳng trong tam giác

✅ Cách chứng minh gọn:

Trong tam giác cân \(A B C\):

  • \(G\): là trọng tâm
  • \(D\): trung điểm \(A C\)
  • \(B D\) cắt \(A H\) tại \(G\)
  • \(H K \parallel A C\) ⇒ theo định lý giao tuyến phụ\(C K\) cắt \(B D\) tại trọng tâm \(G\)

→ Ba điểm \(C , G , K\) thẳng hàng.


✅ Kết luận:

  • a) \(\triangle A H B = \triangle A H C\), và \(A H \bot B C\)
  • b) \(A G = 4 \&\text{nbsp};\text{cm}\)
  • c) \(C , G , K\) thẳng hàng