Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ta có: \(MA=MB=\frac{AB}{2}\)
\(BN=NC=\frac{BC}{2}\)
mà BA=BC
nên MA=MB=BN=NC
Xét ΔNCD vuông tại C và ΔMBC vuông tại B có
NC=MB
CD=BC
Do đó: ΔNCD=ΔMBC
=>\(\hat{CND}=\hat{BMC}\)
mà \(\hat{BMC}+\hat{BCM}=90^0\) (ΔBCM vuông tại B)
nên \(\hat{CND}+\hat{BCM}=90^0\)
=>CM⊥DN tại E
=>\(\hat{CEN}=90^0\)
b: ta có: \(\hat{MAD}=90^0\)
=>A nằm trên đường tròn đường kính MD(1)
Ta có: \(\hat{MED}=90^0\)
=>E nằm trên đường tròn đường kính MD(2)
Từ (1),(2) suy ra A,E,M,D cùng thuộc một đường tròn

a, Chứng minh ∆CMB = ∆DNC => N C E ^ = C D N ^
Từ đó chứng minh được C E N ^ = 90 0
b, Ta có A,D,E,M cùng thuộc được tròn đường kính DM
c, Gọi I là trung điểm của CD, chứng minh AI song song với MC
=> ∆ADE cân tại A
=> B,E,D cùng thuộc (A;AB)

a, ^BOD + ^OBD = 120 = ^BOD + ^EOC (vì ^DOE = 60)
=> ^BDO = ^EOC
=> ∆BDO đồng dạng ∆COE
=> BD/BO = CO/CE
<=> BD.CE = BC²/4
b, DO/OE = BD/CO
<=> BO/OE = BD/OD
=> ∆BOD đồng dạng ∆OED
=> ^BDO = ^ODE
=> OD là tia phân giác của góc BDE
c, kẻ OI,OK lần lượt vuông góc với AB,DE
AB tiếp xúc với (O;OI)
có ∆IOD = ∆KOD (cạnh huyền góc nhọn)
=> OI = OK
mà OK ┴ DE
=> (O) luôn tiếp xúc với DE
a: ta có: \(MA=MB=\frac{AB}{2}\)
\(BN=NC=\frac{BC}{2}\)
mà BA=BC
nên MA=MB=BN=NC
Xét ΔNCD vuông tại C và ΔMBC vuông tại B có
NC=MB
CD=BC
Do đó: ΔNCD=ΔMBC
=>\(\hat{CND}=\hat{BMC}\)
mà \(\hat{BMC}+\hat{BCM}=90^0\) (ΔBCM vuông tại B)
nên \(\hat{CND}+\hat{BCM}=90^0\)
=>CM⊥DN tại E
=>\(\hat{CEN}=90^0\)
b: ta có: \(\hat{MAD}=90^0\)
=>A nằm trên đường tròn đường kính MD(1)
Ta có: \(\hat{MED}=90^0\)
=>E nằm trên đường tròn đường kính MD(2)
Từ (1),(2) suy ra A,E,M,D cùng thuộc một đường tròn
Tai sao lai tu goc ma suy ra dc nam tren hay khong vay???