Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu hỏi của nguyenvandat - Toán lớp 7 - Học toán với OnlineMath

x O y A C B D
OA = OC (gt)
=> tam giác OAC cân tại O (đn)
=> ^OAC = (180 - ^O) : 2 (tính chất) (1)
OA = OC (gt)
CD = AB (Gt)
OA + AB = OB
OC + CD = OD
=> OB = OD
=> tam giác OBD cân tại O (đn)
=> ^ABD = (180 - ^O) : 2 (tc) và (1)
=> ^OAC = ^ABD mà 2 góc này đồng vị
=> AC // BD (đl)

a/ Xét t/g OAD và t/g OBC cos
AO = OB
\(\widehat{xOy}\) : chung
OD = OC
=> t/g OAD = t/g OBC
=> AD = BC
b/ Không rõ đề.
c/ Có
OC = ODOA = OB
=> AC = BD
Có \(\widehat{OAD}=\widehat{OBE}\) (do t/g OAD = t/g OBC)
=> \(180^o-\widehat{OAD}=180^o-\widehat{OBE}\)
=> \(\widehat{CAD}=\widehat{CBD}\)
Xét t/g AEC và t/g BED có
\(\widehat{CAD}=\widehat{CBD}\)
AC = BD\(\widehat{OCB}=\widehat{ODA}\)
=> t/g AEC = t/g BED (g.c.g)
=> AE = BE
Xét t/g OAE và t/g OBE có
OA = OB
AE = BEOE : chung
=> t/g OAE = t/g OBE
=> ^xOE = ^yOe
=> OE là pg góc xOy

a: Xét ΔOAC và ΔODB có
OA=OD
\(\widehat{O}\) chung
OC=OB
Do đó: ΔOAC=ΔODB

a) Ot là tia phân giác của góc bẹt xOy
nên ˆtOx���^=ˆtOy���^=90o90�
Xét ΔAOC và ΔDOB có OA=OD(gt)
ˆAOC���^=ˆDOB���^=90o90�(cnt)
OC=OB(gt)
Do đó ΔAOC và ΔDOB (c.g.c)⇒AC=BD
Ta có ΔAOC và ΔDOB (cmt) ⇒ ^C1�1^=^B1�1^ và ^A1�1^=^D1�1^(góc tương ứng)
Mà ^A1�1^+^C1�1...
Xét ΔOBD có
OA/OB=OC/OD
Do đó: CA//BD