Bài 5: Cho tam giác ABC vuông tại A ( AB< AC), đường cao AH. Trên cạnh AC lấy đ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác MHKD có

\(\widehat{MHK}=\widehat{MDK}=\widehat{DKH}=90^0\)

Do đó: MHKD là hình chữ nhật

b: Xét tứ giác ADKB có

\(\widehat{DKB}+\widehat{DAB}=180^0\)

=>ADKB nội tiếp

=>\(\widehat{AKB}=\widehat{ADB}=45^0\)

Xét ΔHAK vuông tại H có \(\widehat{HKA}=45^0\)

nên ΔHAK vuông cân tại H

=>HA=HK

a: Xét ΔBHA vuông tại Hvà ΔBHK vuông tại H có

BH chung

HA=HK

Do đó: ΔBHA=ΔBHK

=>BA=BK

=>\(\hat{BAK}=\hat{BKA}\)

b: ta có; \(\hat{BAD}=\hat{KAD}=\frac12\cdot\hat{BAK}\) (AD là phân giác của góc BAK)

\(\hat{BKI}=\hat{AKI}=\frac12\cdot\hat{BKA}\) (KI là phân giác của góc BKA)

\(\hat{BAK}=\hat{BKA}\)

nên \(\hat{BAD}=\hat{KAD}=\hat{BKI}=\hat{AKI}\)

Xét ΔBAD và ΔBKI có

\(\hat{BAD}=\hat{BKI}\)

BA=BK

\(\hat{ABD}\) chung

Do đó: ΔBAD=ΔBKI

=>BD=BI; AD=KI

Xét ΔBAK có \(\frac{BI}{BA}=\frac{BD}{BK}\)

nên IK//AK

=>AKDI là hình thang

Hình thang AKDI có AD=KI

nên AKDI là hình thang cân

3 tháng 12 2018

1a/IM vuông góc AB=>AMI=90 do

IN vuông góc AC=>ANI=90 do

△ABC vuông tại A=>BAC=90 do

=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật

1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)

Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)

Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi

3 tháng 12 2018

2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H

=> AM=MB VA EM=MH hay AB giao voi EH tai TD M

=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn

2b/Co AEBH la hcn=>EH=AB

+) Mà AB=AC=>EH=AC(1)

+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.

Co goc BAH=1/2 EAH ; góc AHE=1/2AHB

Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.

Mà 2 góc này ở vị trí SLT=> EH//AC(2)

Từ (1) va (2)=>tg AEHC la hbh

a: Xét ΔBAD có BA=BD

nên ΔBAD cân tại B

Ta có: \(\hat{BAD}+\hat{CAD}=\hat{BAC}=90^0\)

\(\hat{BDA}+\hat{HAD}=90^0\) (ΔHAD vuông tại H)

\(\hat{BAD}=\hat{BDA}\) (ΔBAD cân tại B)

nên \(\hat{CAD}=\hat{HAD}\)

=>AD là phân giác của góc HAC

b: Xét ΔAHD và ΔAED có

AH=AE

\(\hat{HAD}=\hat{EAD}\)

AD chung

Do đó: ΔAHD=ΔAED

=>\(\hat{AHD}=\hat{AED}\)

=>\(\hat{AED}=90^0\)

=>ED⊥AC
mà HK⊥AC
nên HK//ED

=>HKED là hình thang

c: ΔAHD=ΔAED

=>DH=DE

=>D nằm trên đường trung trực của HE(1)

Ta có: AH=AE

=>A nằm trên đường trung trực của HE(2)

Từ (1),(2) suy ra AD là đường trung trực của HE

=>AD⊥HE

Xét ΔAEH có

HK,AD là các đường cao

HK cắt AD tại I

Do đó: I là trực tâm của ΔAEH

=>EI⊥AH tại F

mà HC⊥HA

nên EF//HC

=>EFHC là hình thang

Hình thang EFHC có EF⊥FH

nên EFHC là hình thang vuông

16 tháng 12 2016

A B C M D E H K

11 tháng 2 2017

mk ko biết

20 tháng 12 2016

Câu c có sai k v bạn??

20 tháng 12 2016

a) Xét tứ giác ABCD có:

. M là trung điểm của BC ( AM là đường trung tuyến)

. M là tđ của AD ( gt)

Vậy: ABCD là hbh ( tứ giác có 2 đường chéo cắt nhau tại tđ của mỗi đường)

\(\widehat{BAC}\) = 900 ( \(\Delta\) ABC vuông tại A)

--> ABCD là hình chữ nhật ( hbh có 1 góc vuông)

b) Ta có: \(IA\perp AC\)

\(CD\perp AC\)

\(\Rightarrow\) IA // CD

Xét tứ giác BIDC có:

. IA // CD (cmt)

\(\Rightarrow\) IB // CD ( B ϵ IA )

. AB =CD ( cạnh đối hcn ABCD )

mà AB = IB ( tính chất đối xứng)

\(\Rightarrow\) IB = CD ( cùng = AB )

Vậy: BIDC là hbh ( tứ giác có 2 cạnh đối vừa //, vừa = nhau)

\(\Rightarrow\) BC // ID ( cạnh đối hbh)

" đề câu c sai nha bạn"

a: Xét tứ giác ADCH có

M là trung điểm của AC

M là trung điểm của HD

Do đó: ADCH là hình bình hành

mà \(\widehat{AHC}=90^0\)

nên ADCH là hình chữ nhật

b: Xét tứ giác ADHE có

HE//AD

HE=AD
Do đó:ADHE là hình bình hành

a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ

nên AMDN là hình chữ nhật

Suy ra: AD=MN

b: Xét tứ giác AMHD có góc AMD=góc AHD=90 độ

nên AMHD là tứ giác nội tiếp

=>A,M,H,D cùng thuộc 1 đường tròn (1)

Xét tứ giác AMDN có góc AMD+góc AND=180 độ

nên AMDN là tứ giác nội tiếp

=>A,M,D,N cùng thuộc 1 đường tròn(2)

Từ (1) và (2) suy ra A,M,H,D,N cùg thuộc 1 đường tròn

=>AMHN là tứ giác nội tiếp

=>góc AHM=90 độ