Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Tam giá ABC nội tiếp đường tròn; BC đường kính của đường tròn=> tam giác ABC vuông tại A
Xét tam giác ABC có góc BAC= 90 độ
\(CA^2=CB^2-AB^2\)( PI TA GO)
\(CA^2=4R^2-R^2\)
\(CA=\sqrt{3}R\)
b, ta có AE=EB (t/c 2 tiếp tuyến cắt nhau)(1)
AF=CF (t/c 2 tiếp tuyến cắt nhau)(2)
ta có:
EF=EA+AE
(1)(2)=> EF= BE+CF
C, ta có góc FOC=FOA(3)
góc AOE=BOE(4)
cả hai đều là tính chất hai tiếp tuyến cắt nhau
ta có FOC+FOA+AOE+BOE= 180 độ
(3)(4)=> 2(FOA+AOE)=180 độ
=> FOA+AOE= 90 độ
=> OE vuông góc với OF
theo (1) và (2) câu a ta có BE.CF=FA.AE
xét tam giác OFE vuông tại O
FA.AE=OA^2=R^2(5)
ta có \(\frac{CB^2}{4}=\frac{4R^2}{4}=R^2\)(6)
(5)(6)=> BE.CF=\(\frac{BC^2}{4}\)
mình chưa làm được câu cuối

a: Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>CE\(\perp\)AB
Xét (O) có
ΔBFC nội tiếp
BC là đường kính
Do đó: ΔBFC vuông tại F
=>BF\(\perp\)AC
XétΔABC có
CE,BF là đường cao
CE cắt BF tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC
b: Xét ΔAEC vuông tại E và ΔAFB vuông tại F có
\(\widehat{A}\) chung
Do đó: ΔAEC ~ΔAFB
=>\(\dfrac{AE}{AF}=\dfrac{AC}{AB}\)
=>\(AE\cdot AB=AC\cdot AF;\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
c: Xét ΔAEF và ΔACB có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
\(\widehat{FAE}\) chung
Do đó: ΔAEF~ΔACB
=>\(\widehat{AEF}=\widehat{ACB}\)
d: Xét tứ giác AEHF có
\(\widehat{AEH}+\widehat{AFH}=180^0\)
=>AEHF là tứ giác nội tiếp
=>A,E,H,F cùng thuộc một đường tròn

a/ Ta có
\(BE\perp AC\Rightarrow\widehat{AEB}=90^o\)
\(AH\perp BC\Rightarrow\widehat{AHB}=90^o\)
=> E và H cùng nhìn AB dưới 1 góc bằng 90 độ => E;H,A;B thuộc đường tròn bán kính = \(\frac{AB}{2}\) , tâm là trung điểm AB
b/ Ta có
\(\widehat{DBE}=\widehat{DFE}\) (Góc nội tiếp đường tròn tâm O cùng chắn cung DE)
\(\widehat{DBE}=\widehat{AHE}\) (Góc nội tiếp đường tròn ngoại tiếp HBAE cùng chắn cung AE)
\(\Rightarrow\widehat{DFE}=\widehat{AHE}\) => DF//AH (Hai đường thẳng bị cắt bởi đường thẳng thứ 3 tạo thành hai góc ở vị trí đồng vị bằng nhau thì chúng // với nhau)
Mà \(AH\perp BC\Rightarrow DF\perp BC\)
c/
Từ E dựng đường thẳng vuông góc với BC cắt (O) tại I => gia của BC với EI là trung điểm EI (đường kính vuông góc với dây cung thì chia đôi dây cung) => I là điểm đối xứng E qua BC.
Nối I với H, D với H
Xét \(\Delta HDF\) và \(\Delta HEI\) ta có
\(BC\perp DF;BC\perp EI\) => BC đi qua trung điểm của DF và EI => tg HDF và tg HEI là tam giác cân tại H (có BC là đường cao đồng thời là đường trung trực)
\(\Rightarrow\widehat{HEI}=\widehat{HIE};\widehat{HDF}=\widehat{HFD}\) (góc ở đáy của tg cân)
Ta có DF//EI (cùng vuông góc với BC) => sđ cung DE = sđ cung FI (Trong đường tròn hai cung bị chắn bởi 2 dây // với nhau thì = nhau)
\(\Rightarrow\widehat{HFD}=\widehat{HEI}\) (góc nội tiếp cùng chắn 2 cung có số đo bằng nhau)
\(\Rightarrow\widehat{HEI}=\widehat{HIE}=\widehat{HDF}=\widehat{HFD}\) => tg HDF đồng dạng với tg HEI
\(\Rightarrow\frac{HD}{HE}=\frac{HF}{HI}\Rightarrow HD.HI=HE.HF\)