Bài 4: Tứ giác ABCD có 𝐴̂ = 600; 𝐵̂=900. Tính góc C, góc D và góc ngoài của tứ giác tại đỉn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABCD có 

\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)

\(\Leftrightarrow\widehat{C}+\widehat{D}=210^0\)

mà \(\widehat{C}-\widehat{D}=20^0\)

nên \(2\cdot\widehat{C}=230^0\)

\(\Leftrightarrow\widehat{C}=115^0\)

\(\Leftrightarrow\widehat{D}=95^0\)

Số đo góc ngoài tại đỉnh C là: \(180^0-115^0=65^0\)

b: Ta có: \(\widehat{C}+\widehat{D}=210^0\)

\(\Leftrightarrow\widehat{D}\cdot\dfrac{7}{4}=210^0\)

\(\Leftrightarrow\widehat{D}=120^0\)

\(\Leftrightarrow\widehat{C}=90^0\)

Số đo góc ngoài tại đỉnh C là: \(180^0-90^0=90^0\)

25 tháng 8

a) Q = 3xy(x + 3y) - 2xy(x + 4y) - x²(y - 1) + y²(1 - x) + 36

= 3x²y + 9xy² - 2x²y - 8xy² - x²y + x² + y² - xy² + 36

= (3x²y - 2x²y - x²y) + (9xy² - 8xy² - xy²) + x² + y² + 36

= x² + y² + 36

b) Do x² ≥ 0 với mọi x ∈ R

y² ≥ 0 với mọi x ∈ R

Q = x² + y² + 36 ≥ 36 với mọi x ∈ R

Q nhỏ nhất khi x² + y² = 0

⇒ x = y = 0

Vậy x = y = 0 thì Q nhỏ nhất và giá trị nhỏ nhất của Q là 36

Cho  hình  thang  𝐴𝐵𝐶𝐷 (𝐴𝐷//𝐵𝐶)  có  đáy  lớn  𝐵𝐶 = 𝐴𝐵 +  𝐶𝐷. Đường phân giác trong  𝐴̂, 𝐵̂ cắt nhau tại  𝐸;  đường phân giác trong  𝐶̂, 𝐷̂ cắt  nhau ở  𝐹.  Đường phân giác ngoài 𝐴̂, 𝐵̂ cắt nhau  ở  𝐼;  đường phân giác ngoài của 𝐶̂, 𝐷̂ cắt nhau  ở  𝐽.  Đường thẳng 𝐴𝐸, 𝐴𝐼, 𝐶𝐽  cắt  đường thẳng  𝐵𝐶 ...
Đọc tiếp

Cho  hình  thang  𝐴𝐵𝐶𝐷 (𝐴𝐷//𝐵𝐶)  có  đáy  lớn  𝐵𝐶 = 𝐴𝐵 +  𝐶𝐷. 
Đường phân giác trong  𝐴̂, 𝐵̂ cắt nhau tại  𝐸;  đường phân giác trong  𝐶̂, 𝐷̂ cắt  nhau ở  𝐹.  Đường phân giác ngoài 𝐴̂, 𝐵̂ cắt nhau  ở  𝐼;  đường phân giác ngoài của 𝐶̂, 𝐷̂ cắt nhau  ở  𝐽.  Đường thẳng 𝐴𝐸, 𝐴𝐼, 𝐶𝐽  cắt  đường thẳng  𝐵𝐶  ở  𝐾, 𝑀, 𝑁. Gọi 𝐻, 𝐺 là trung điểm của 𝐴𝐵, 𝐶𝐷.

a)  Chứng minh rằng ∆𝐴𝐵𝐾 cân và 𝐸 là trung điểm 𝐴𝐾.
b)  Chứng minh rằng 𝐷𝐹 ⊥ 𝐶𝐹 và 𝐷, 𝐹, 𝐾 thẳng hàng.
c)  Chứng minh rằng 𝐼 là trung điểm 𝐴𝑀, 𝐽 là trung điểm 𝐷𝑁.
d)  Chứng minh rằng 𝐼, 𝐺, 𝐸, 𝐹, 𝐻, 𝐽 thẳng hàng.

0