Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi giao điểm của AK và BD là O
hay AK cắt BD tại O(1)
Xét ΔADB có
BQ là đường trung tuyến ứng với cạnh AD
DM là đường trung tuyến ứng với cạnh AB
BQ và DM cắt nhau tại K
Do đó: K là trọng tâm của ΔADB
Suy ra: O là trung điểm của BD
Xét ΔBCD có
BN là đường trung tuyến ứng với cạnh DC
DP là đường trung tuyến ứng với cạnh BC
BN cắt DP tại G
Do đó: G là trọng tâm của ΔBCD
Suy ra: AG là đường trung tuyến ứng với cạnh BD
mà AO là đường trung tuyến ứng với cạnh BD
và AG,AO có điểm chung là A
nên A,G,O thẳng hàng
hay CG cắt DB tại O(2)
từ (1), (2) và (3) suy ra BD,AK,CG đồng quy

Gọi giao điểm của AK và BD là O
hay AK cắt BD tại O(1)
Xét ΔADB có
BQ là đường trung tuyến ứng với cạnh AD
DM là đường trung tuyến ứng với cạnh AB
BQ và DM cắt nhau tại K
Do đó: K là trọng tâm của ΔADB
Suy ra: O là trung điểm của BD
Xét ΔBCD có
BN là đường trung tuyến ứng với cạnh DC
DP là đường trung tuyến ứng với cạnh BC
BN cắt DP tại G
Do đó: G là trọng tâm của ΔBCD
Suy ra: AG là đường trung tuyến ứng với cạnh BD
mà AO là đường trung tuyến ứng với cạnh BD
và AG,AO có điểm chung là A
nên A,G,O thẳng hàng
hay CG cắt DB tại O(2)
từ (1), (2) và (3) suy ra BD,AK,CG đồng quy
HT~
(nhớ tiick tôi)

MỌI NGƯỜI GIÚP MÌNH TRONG HÔM NAY VỚI Ạ !!! MAI MÌNH KIỂM TRA RÙI !!! THANK KIU EVERYONE, MONG NHẬN ĐK CÂU TRẢ LỜI SỚM ( MÀ MỌI NGƯỜI KHÔNG CẦN VX HÌNH ĐÂU Ạ ^^)
1) a. xét trong tam giác ABC có
I trung điểm AB và K trung điểm AC =>IK là đường trung bình của tam giác ABC=>IK song song với BC
vậy BCKI là hình thang (vì có hai cạng đáy song song)
b.
IK // và =1/2BC (cm ở câu a) =>IK song song NM
M trung điểm HC và N trung điểm HB mà HB+HC=CB =>MN=IK=1/2BC
suy ra MKIN là hbh => có hai đường chéo bằng nhau =>IM=NK

a: Gọi O là giao điểm của AC và BD
ABCD là hình thoi
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Ta có: \(AM=MB=\frac{AB}{2}\)
\(CN=DN=\frac{CD}{2}\)
mà AB=CD
nên AM=MB=CN=DN
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
=>AN//CM và AN=CM(2)
Xét ΔBAC có
BO,CM là các đường trung tuyến
CM cắt BO tại K
Do đó: K là trọng tâm của ΔABC
=>\(CK=\frac23CM\) (1)
Xét ΔACD có
AN,DO là các đường trung tuyến
AN cắt DO tại H
Do đó: H là trọng tâm của ΔACD
=>\(AH=\frac23AN\) (3)
Từ (1),(2),(3) suy ra CK=AH
Xét tứ giác AHCK có
AH//CK
AH=CK
Do đó: AHCK là hình bình hành
b: AMCN là hình bình hành
=>AC cắt MN tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểm của MN
=>AC,BD,MN đồng quy tại O
a) Chứng minh tứ giác \(A K H C\) là hình thoi
- Gọi \(O\) là giao điểm hai đường chéo \(A C\) và \(B D\). Trong hình thoi, \(O\) là trung điểm của cả \(A C\) và \(B D\), đồng thời \(A C \bot B D\).
- Xét tam giác \(A B C\), có \(M\) là trung điểm của \(A B\), \(O\) là trung điểm của \(A C\). Suy ra:
\(O M \parallel B C \left(\right. đườ n g t r u n g b \overset{ˋ}{\imath} n h \left.\right) .\)
- Xét tam giác \(A C D\), có \(N\) là trung điểm của \(C D\), \(O\) là trung điểm của \(A C\). Suy ra:
\(O N \parallel A D .\)
- Mà \(A D \parallel B C\) (tính chất hình thoi), do đó:
\(O M \parallel O N .\)
Suy ra \(M N \parallel A C\).
- Xét tứ giác \(A K H C\):
- \(A , C\) nằm trên đường chéo \(A C\).
- \(H , K\) nằm trên đường chéo \(B D\).
- Ta có \(A C \bot B D\).
⇒ Hai đường chéo của tứ giác \(A K H C\) vuông góc nhau và cắt nhau tại trung điểm (chính là \(O\)).
Do đó \(A K H C\) là hình thoi.
b) Chứng minh \(A C , B D , M N\) đồng quy
- Từ trên, ta đã có \(M N \parallel A C\).
- \(A C\) và \(B D\) cắt nhau tại \(O\).
- Vì \(M N \parallel A C\), nên đường thẳng \(M N\) cắt \(B D\) tại đúng một điểm, gọi là \(P\).
- Dễ thấy \(P\) chính là giao điểm chung của \(B D\) và \(M N\). Do \(M N \parallel A C\), nên ba đường thẳng \(A C , B D , M N\) cùng đi qua một điểm:
\(A C \cap B D = O , M N \cap B D = P , m \overset{ˋ}{a} O \in M N .\)
⇒ \(A C , B D , M N\) đồng quy tại \(O\).
Kết luận:
a) Tứ giác \(A K H C\) là hình thoi.
b) Ba đường thẳng \(A C , B D , M N\) đồng quy tại giao điểm \(O\).
Tham Khảo bạn nhé