K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8

a) Chứng minh BC = 2AM

1. Thiết lập hệ tọa độ: Đặt A là gốc tọa độ: A(0,0). Vì AD vuông góc với AB và AD = AB, ta có thể đặt B(c, 0) và D(0, c) với c là độ dài AB = AD. Tương tự, vì AE vuông góc với AC và AE = AC, ta có thể đặt C(0, b) và E(b, 0) với b là độ dài AC = AE.

2. Tìm tọa độ M: M là trung điểm của DE. Tọa độ của M là trung bình cộng tọa độ của D và E: M = ( (0+b)/2 , (c+0)/2 ) = (b/2, c/2).

Tính BC và AM: Độ dài BC: BC = |sqrt( (c-0)^2 + (0-b)^2 )| = sqrt(c^2 + b^2). Độ dài AM: AM = |sqrt( (b/2 - 0)^2 + (c/2 - 0)^2 )| = sqrt( (b/2)^2 + (c/2)^2 ) = sqrt(b^2/4 + c^2/4) = (1/2) * sqrt(b^2 + c^2). Từ đó, ta có BC = 2 * AM.

b) Chứng minh AM vuông góc với BC

1. Tìm tọa độ vector MA và vector BC: Vector MA = A - M = (0 - b/2, 0 - c/2) = (-b/2, -c/2). Vector BC = C - B = (0 - c, b - 0) = (-c, b).

2. Kiểm tra tích vô hướng: MA · BC = (-b/2) * (-c) + (-c/2) * b = (bc/2) - (bc/2) = 0. Vì tích vô hướng của hai vector MA và BC bằng 0, nên AM vuông góc với BC.

Cho mình sửa lại ạ

a: Trên tia đối của tia MA, lấy K sao cho MA=MK

=>M là trung điểm của AK

ta có; \(\hat{DAE}+\hat{DAB}+\hat{EAC}+\hat{BAC}=360^0\)

=>\(\hat{DAE}+\hat{BAC}=360^0-90^0-90^0=180^0\left(1\right)\)

Xét ΔMAE và ΔMKD có

MA=MK

\(\hat{AME}=\hat{KMD}\) (hai góc đối đỉnh)

ME=MD

Do đó: ΔMAE=ΔMKD

=>\(\hat{MAE}=\hat{MKD}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AE//KD

=>\(\hat{KDA}+\hat{DAE}=180^0\left(2\right)\)

Từ (1),(2) suy ra \(\hat{KDA}=\hat{BAC}\)

Ta có: ΔMAE=ΔMKD

=>AE=KD

mà AE=CA

nên AC=KD

Xét ΔKDA và ΔCAB có

KD=CA

\(\hat{KDA}=\hat{CAB}\)

DA=AB

Do đó: ΔKDA=ΔCAB

=>KA=CB

mà KA=2AM

nên BC=2AM

b: Gọi H là giao điểm của AM và BC

ΔKDA=ΔCAB

=>\(\hat{KAD}=\hat{CBA}\)

TA có: \(\hat{KAD}+\hat{DAB}+\hat{BAH}=180^0\)

=>\(\hat{KAD}+\hat{BAH}=180^0-90^0=90^0\)

=>\(\hat{BAH}+\hat{ABC}=90^0\)

=>ΔAHB vuông tại H

=>AH⊥BC tại H

=>MA⊥BC tại H

15 tháng 1 2017

Dùng hình của bạn Mai nhé.

Kẽ DP và EQ \(⊥\)HK tại P và Q.

Xét \(\Delta DPA\)và \(\Delta AHB\)

\(\hept{\begin{cases}\widehat{DPA}=\widehat{AHB}=90\\DA=AB\\\widehat{PDA}=\widehat{HAB}\left(phu\widehat{PAD}\right)\end{cases}}\)

\(\Rightarrow\Delta DPA=\Delta AHB\)

\(\Rightarrow DP=AH\left(1\right)\)

Xét \(\Delta EQA\)và \(\Delta AHC\)

\(\hept{\begin{cases}\widehat{EQA}=\widehat{CHA}=90\\EA=CA\\\widehat{QEA}=\widehat{HCA}\left(phu\widehat{QAE}\right)\end{cases}}\)

\(\Rightarrow\Delta EQA=\Delta AHC\)

\(\Rightarrow EQ=AH\left(2\right)\)

Từ (1) và (2) \(\Rightarrow DP=EQ\)

Xét \(\Delta DPK\)và \(\Delta EQK\)

\(\hept{\begin{cases}\widehat{DPK}=\widehat{EQK}=90\\DP=EQ\\\widehat{DKP}=\widehat{EKQ}\end{cases}}\)

\(\Rightarrow\Delta DPK=\Delta EQK\)

\(\Rightarrow DK=EK\)

Vậy K là trung điểm của DE

15 tháng 1 2017

Hình đây anh @alibaba

A B C H E D K

27 tháng 12 2015

có thể làm được nhưng k biết vẽ hình

14 tháng 12 2016

Đây là toán lớp 6

16 tháng 12 2016
Toán lớp 6
28 tháng 11 2017

A B C D E M F I K J

Trên tia đối của tia AM, lấy điểm I sao cho MI = MA. Khi đó ta có thể suy ra \(\Delta AMC=\Delta IMB\left(c-g-c\right)\)

\(\Rightarrow\widehat{MCA}=\widehat{MBI}\) hay BI // AC và BI = AC.

Gọi N là giao điểm của BI và AE. Do AE vuông góc với AC nên AE cũng vuông góc với BI. Vậy thì \(\widehat{AKI}=90^o\)

Ta thấy hai góc DAE và ABI có \(DA\perp AB;AE\perp BI\) nên \(\widehat{DAE}=\widehat{ABI}\)

Vậy thì \(\Delta DAE=\Delta ABI\left(c-g-c\right)\)

\(\Rightarrow\widehat{DEA}=\widehat{AIB}\)

Kéo dài NI cắt DE tại J, AI cắt DE tại F.

Xét tam giác vuông NEJ ta có \(\widehat{NJE}+\widehat{JEN}=90^o\)

Vậy nên \(\widehat{NJE}+\widehat{JIF}=90^o\Rightarrow\widehat{JFI}=90^o\)

Hay \(AM\perp DE.\)

7 tháng 2 2018

Câu hỏi của Nguyễn Đức Hiếu - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo bài tương tự tại đây nhé.