Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Được rồi, cách giải của bạn cũng đúng.
a. Chứng minh IK // DE và IK = DE
Gọi F là trung điểm của BC. Khi đó, theo tính chất trung tuyến, ta có: BF = FC = 1/2 BC và BD = 2/3 BG, CE = 2/3 CG. Do I và K là trung điểm của BG và CG nên BI = 1/2 BG, CK = 1/2 CG. Từ đó suy ra: BI = BD - DI = 2/3 BG - DI và CK = CE - EK = 2/3 CG - EK. Do DE // BC nên theo định lí Thales, ta có: DI / BI = EK / CK. Thay các giá trị đã tính được vào, ta được: DI / (2/3 BG - DI) = EK / (2/3 CG - EK). Rút gọn biểu thức trên, ta được: 3DI (BG - CG) = 3EK (BG - CG). Do BG - CG = BF - FC = 0 nên biểu thức trên luôn đúng với mọi DI và EK. Vậy IK // DE và IK = DE.
b. Chứng minh các tính chất yêu cầu
Do IK // DE nên theo định lí Thales, ta có: IM / IA = KN / AC. Do IA = AC nên IM = KN. Do PG // BC nên theo định lí Thales, ta có: PG / PA = GQ / QC. Do PA = QC nên PG = GQ. Do DE // BC nên theo định lí Thales, ta có: DE / BC = MI / MB. Do MB = 2MB’ với B’ là trung điểm của BC nên DE / (2MB’) = MI / MB. Nhân hai vế với 2, ta được: DE / MB’ = 2MI / MB. Do MB’ = MB nên DE = 3MI.
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABC có
E,D lần lượt là trung điểm của AB và AC
nên ED là đường trung bình
=>ED//BC va ED=1/2BC(5)
Xét ΔGBC có
I,K lần lượt là trung điểm của GB và GC
nên IK là đường trung bình
=>IK//BC và IK=BC/2(6)
Từ(5) và (6) suy ra DE//IK và DE=IK
b: Xét ΔBED có MI//ED
nên MI/ED=BI/BD=1/3(1)
Xét ΔCED có KN//ED
nên KN/ED=CK/CE=1/3(2)
Từ (1) và (2) suy ra MI=KN
Xét ΔBPG có MI//PG
nên MI/PG=BI/BG=1/2(3)
Xét ΔCGQ có KN//QG
nên KN/GQ=CN/CQ=1/2(4)
Từ (3)và (4) suy ra PG=GQ
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải
Ta thấy đường trung bình tam giác ABC nên BEDC là hình thang, lại có\(BM=MC\cdot DN=NC\Rightarrow MN\) là đường trung bình hình thang BEDC hay MN ong song DE và BC. Lại dùng đường trung bình thì
\(MI=KN=\frac{DE}{2}\left(1\right)\)
\(MN=\frac{DE^2+BC}{2}\Rightarrow IK=MN-2MI=\frac{DE+BC}{2}-DE\)
\(=\frac{BC-DE}{2}=\frac{DE^2}{2}\left(BC=2DE\right)\left(2\right)\)
\(\Leftrightarrow Q\cdot E\cdot D\Rightarrowđcpm\)
Mình sẽ làm câu b trước rồi từ đó suy ra a
b)Giả sử MP=PQ=QN đã có từ trước
Xét △△ ABC có E là trung điểm AB,D là trung điểm AC \Rightarrow ED là đường trung bình của △△ ABC\Rightarrow ED//BC và ED=BC/2(*)
Xét hình thang EDBC có M là trung điểm BE,N là trung điểm CE \Rightarrow MN//BC( (*) (*) )
Từ (*)( (*) (*) ) \Rightarrow ED//MN
Xét △△ BED có M là trung điểm BE,MP//ED \Rightarrow MP là đường trung bình của △△ BED \Rightarrow MP=ED/2
Tương tự cũng có NQ=ED/2
Ta có :MP=PQ
\Leftrightarrow ED2=BC−ED2ED2=BC−ED2
\Leftrightarrow ED=BC-ED
\Leftrightarrow 2ED=BC
Tương tự với NQ và PQ cũng rứa
Vậy muốn NQ=PQ=MP thì 2ED=BC Điều này là hiển nhiên ở (*)
từ đó phát triển lên câu a)NQ=PQ=MP=1/2ED
\Rightarrow MN=3/2ED \RightarrowMN=3/4BC
Đúng thì thanks giùm nha
![](https://rs.olm.vn/images/avt/0.png?1311)
https://hoidap247.com/
có gì bạn vào đó tách từng bài ra và may thì sẽ có ng trả lời còn k may thì....