K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

\(A=\left(2012-1\right)\left(2012+1\right)-2012^2=2012^2-1-2012^2=-1\)

24 tháng 10 2021

\(A=\left(2012-1\right)\left(2012+1\right)-2012^2=2012^2-1-2012^2=-1\)

14 tháng 10 2017

\(A=2011.2013-2012^2\)

Gọi 2012 là a ta có:

\(2011=a-1;2013=a+1\)

\(\Rightarrow A=\left(a+1\right).\left(a-1\right)-a^2\)

\(\Rightarrow A=a^2-a+a-1-a^2\)

\(\Rightarrow A=a^2-1-a^2\)

\(\Rightarrow A=-1\)

25 tháng 9 2016

2011.2013-2012^2=(2012-1).(2012+1)-2012^2

                          =2012^2-1^2-2012^2

                         =2012^2-2012^2-1^2

                           =-1 

4 tháng 7 2016

B3:\(\Rightarrow90.10^n-10^n.10^2+10^n.10-20\Rightarrow10^n.\left(90-10^2\right)+10^n.10-20\)

\(\Rightarrow10^n.\left(90-100\right)+10^n.10-20\Rightarrow-10.10^n+10^n.10-20\Rightarrow-20\)

4 tháng 7 2016

\(A=-\left(x^2-x+5\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{19}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\right]\)

\(=-\left(x-\frac{1}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}\)

Vậy \(A_{min}=-\frac{19}{4}\Leftrightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)

1 tháng 11 2016

=> e chịu ạ 

25 tháng 9 2021

Mình đang cần gấp

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

12 tháng 7 2024

1; \(x^2\) + 3\(x^2\) + 3\(x\) = 4\(x^2\) + 3\(x\) (1) 

Thay \(x=99\) vào (1) ta có:

4.992 + 3.99 = 4.9801 + 297 = 39204 + 297 = 39501

 

 

9 tháng 11 2017

1/ Ta có : P\left(x\right)=-x^2+13x+2012=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}P(x)=−x2+13x+2012=−(x−213​)2+48217​≤48217​
Dấu "=" xảy ra khi x = 13/2
Vậy Max P(x) = 8217/4 tại x = 13/2

9 tháng 11 2017

1/ Ta có : P\left(x\right)=-x^2+13x+2012=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}P(x)=−x2+13x+2012=−(x−213​)2+48217​≤48217​
Dấu "=" xảy ra khi x = 13/2
Vậy Max P(x) = 8217/4 tại x = 13/2
2/ Ta có : x^3+3xy+y^3=x^3+3xy.1+y^3=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1x3+3xy+y3=x3+3xy.1+y3=x3+y3+3xy(x+y)=(x+y)3=1
3/ a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0a+b+c=0⇔(a+b+c)2=0⇔a2+b2+c2+2(ab+bc+ac)=0
\Leftrightarrow ab+bc+ac=-\frac{1}{2}⇔ab+bc+ac=−21​ \Leftrightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}⇔(ab+bc+ac)2=41​⇔a2b2+b2c2+c2a2+2abc(a+b+c)=41​
\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}⇔a2b2+b2c2+c2a2=41​(vì a+b+c=0)
Ta có : a^2+b^2+c^2=1\Leftrightarrow\left(a^2+b^2+c^2\right)^2=1\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1a2+b2+c2=1⇔(a2+b2+c2)2=1⇔a4+b4+c4+2(a2b2+b2c2+c2a2)=1
\Leftrightarrow a^4+b^4+c^4=1-2\left(a^2b^2+b^2c^2+c^2a^2\right)=1-\frac{2.1}{4}=\frac{1}{2}⇔a4+b4+c4=1−2(a2b2+b2c2+c2a2)=1−42.1​=21​

12 tháng 10 2019

2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)

b) \(x^2+16x+64=\left(x+8\right)^2\)

c) \(x^3-8y^3=x^3-\left(2y\right)^3\)

\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)

d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)