Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1)
Vì \(a,b,c\) là ba cạnh của tam giác nên :
\(a+b-c,b+c-a,c+a-b>0\)
Đặt \((a+b-c,b+c-a,c+a-b)=(x,y,z)\Rightarrow (a,b,c)=\left(\frac{x+z}{2},\frac{x+y}{2},\frac{y+z}{2}\right)\)
BĐT cần CM tương đương:
\((x+y)(y+z)(x+z)\geq 8xyz\) với \(x,y,z>0\)
Áp dụng BĐT AM-GM ta có:
\((x+y)(y+z)(x+z)\geq 2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}=8xyz\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z\Leftrightarrow a=b=c\)
Bài 2)
Để đề bài chặt chẽ phải bổ sung điều kiện \(a,b,c>0\)
\((a^2+b^2+c^2)^2>2(a^4+b^4+c^4) \Leftrightarrow 2(a^2b^2+b^2c^2+c^2a^2) >a^4+b^4+c^4\)
\(\Leftrightarrow 4a^2b^2>(c^2-a^2-b^2)^2\Leftrightarrow (2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)>0\)
\(\Leftrightarrow [(a+b)^2-c^2][c^2-(a-b)^2]>0\)
\(\Leftrightarrow (a+b-c)(a+b+c)(c+b-a)(c+a-b)>0\)
\(\Leftrightarrow (a+b-c)(b+c-a)(c+a-b)>0\). Khi đó xảy ra các TH:
+) Cả ba nhân tử \(a+b-c,b+c-a,c+a-b>0\) đồng nghĩa với \(a,b,c\) là ba cạnh tam giác
+ ) Tồn tại một nhân tử nhỏ hơn $0$ sẽ kéo theo bắt buộc phải có thêm một nhân tử nhỏ hơn $0$ nữa. Giả sử \(\left\{\begin{matrix} a+b-c<0\\ b+c-a<0\end{matrix}\right.\Rightarrow 2b < 0\) (vô lý)
Vậy ta có đpcm

Ta có:\(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ac}\ge\dfrac{9}{1+1+1+ab+bc+ca}\)(AM-GM)
Lại có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+a^2+b^2+c^2}=\dfrac{9}{6}=\dfrac{3}{2}\)
\(\Rightarrowđpcm\)
Cháu làm cho bác câu 2 thôi,câu 3 THANGDZ làm rồi sợ mất bản quyền lắm:v
Lời giải:
Áp dụng liên tiếp bất đẳng thức AM-GM và Cauchy-Schwarz ta có:
\(\dfrac{a}{a+2b+3c}+\dfrac{b}{b+2c+3a}+\dfrac{c}{c+2a+3b}\)
\(=\dfrac{a^2}{a^2+2ab+3ac}+\dfrac{b^2}{b^2+2bc+3ab}+\dfrac{c^2}{c^2+2ac+3bc}\)
\(\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+5ab+5bc+5ac}\)
\(=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+3\left(ab+bc+ac\right)}\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\left(a+b+c\right)^2}=\dfrac{1}{2}\)

1, \(a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=a^3+b^3+3a^3b+3ab^3+6a^2b^2\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+2ab+b^2\right)\)
\(=a^2-ab+b^2+3ab\left(a+b\right)^2\)
\(=a^2-ab+b^2+3ab\)
\(=a^2+2ab+b^2=\left(a+b\right)^2\)
\(=1\)
Vậy A = 1
Bài 2: ( đặt đề bài là A )
Đặt \(b+c-a=x,a+c-b=y,a+b-c=z\)
\(\Rightarrow a+b+c=x+y+z\)
\(\Leftrightarrow A=\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)-x^3-y^3-z^3\)
\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
\(=3.2c.2a.2b=24abc\)
Vậy...
Bài 3:
+) Xét p = 3 có: \(p^2+2=11\in P\) ( t/m )
+) Xét \(p\ne3\) thì:
+ \(p=3k+1\Rightarrow p^2+2=\left(3k+1\right)^2+2=9k^2+6k+3⋮3\notin P\)
+ \(p=3k+2\Rightarrow p^2+2=\left(3k+2\right)^2+2=9k^2+12k+6⋮3\notin P\)
Vậy p = 3
Bài 4:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\)
\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2c}{abc}+\dfrac{2a}{abc}+\dfrac{2b}{abc}=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2\left(a+b+c\right)}{abc}=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)
\(\Rightarrowđpcm\)

a ) \(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2+2.0=0\)
\(\Leftrightarrow a^2+b^2+c^2=0\)
Do \(a^2\ge0;b^2\ge0;c^2\ge0\)
\(\Rightarrow a^2+b^2+c^2\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=0\) ( * )
Thay * vào biểu thức M , ta được :
\(M=\left(0-1\right)^{1999}+0^{2000}+\left(0+1\right)^{2001}\)
\(=-1^{1999}+0+1^{2001}\)
\(=-1+0+1\)
\(=0\)
Vậy \(M=0\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{abc}\)
\(\Leftrightarrow\dfrac{bc}{abc}+\dfrac{ac}{abc}+\dfrac{ab}{abc}=\dfrac{1}{abc}\)
\(\Leftrightarrow\dfrac{bc+ac+ab-1}{abc}=0\)
\(\Leftrightarrow bc+ac+ab-1=0\)
\(\Leftrightarrow bc+ac+ab=1\)
Mà \(a^2+b^2+c^2=1\)
\(\Rightarrow bc+ac+ab=a^2+b^2+c^2\)
\(\Rightarrow2bc+2ac+2ab=2a^2+2b^2+2c^2\)
\(\Rightarrow2a^2+2b^2+2c^2-2bc-2ac-2ab=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
Do \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(a-c\right)^2\ge0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)
Mà \(P=\dfrac{a+b}{b+c}+\dfrac{b+c}{c+a}+\dfrac{c+a}{a+b}\)
\(\Rightarrow P=\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a+c}{a+c}\)
\(\Rightarrow P=1+1+1=3\)
Vậy \(P=3\)

Từ a+b+c=6 \(\Rightarrow\)a+b=6-c
Ta có: ab+bc+ac=9\(\Leftrightarrow\)ab+c(a+b)=9
\(\Leftrightarrow\)ab=9-c(a+b)
Mà a+b=6-c (cmt)
\(\Rightarrow\)ab=9-c(6-c)
\(\Rightarrow\)ab=9-6c+c2
Ta có: (b-a)2\(\ge\)0 \(\forall\)b, c
\(\Rightarrow\)b2+a2-2ab\(\ge\)0
\(\Rightarrow\)(b+a)2-4ab\(\ge\)0
\(\Rightarrow\)(a+b)2\(\ge\)4ab
Mà a+b=6-c (cmt)
ab= 9-6c+c2 (cmt)
\(\Rightarrow\)(6-c)2\(\ge\)4(9-6c+c2)
\(\Rightarrow\)36+c2-12c\(\ge\)36-24c+4c2
\(\Rightarrow\)36+c2-12c-36+24c-4c2\(\ge\)0
\(\Rightarrow\)-3c2+12c\(\ge\)0
\(\Rightarrow\)3c2-12c\(\le\)0
\(\Rightarrow\)3c(c-4)\(\le\)0
\(\Rightarrow\)c(c-4)\(\le\)0
\(\Rightarrow\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}}\)hoặc\(\hept{\begin{cases}c\le0\\c-4\ge0\end{cases}}\)
*\(\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}c\ge0\\c\le4\end{cases}\Leftrightarrow}0\le c\le4}\)
*

Bài 1:
Ta có:
\(2\left(a^2+b^2\right)=\left(a-b\right)^2\)
\(\Rightarrow2\left(a^2+b^2\right)-\left(a-b\right)^2=0\)
\(\Rightarrow2a^2+2b^2-\left(a^2-2ab+b^2\right)=0\)
\(\Rightarrow2a^2+2b^2-a^2+2ab-b^2=0\)
\(\Rightarrow a^2+2ab+b^2=0\)
\(\Rightarrow\left(a+b\right)^2=0\)
\(\Rightarrow a+b=0\)
Vì hai số đối nhau là hai số có tổng bằng 0
Vậy a và b là hai số đối nhau
Bài 2:
Ta có:
\(a^2+b^2+c^2=ab+bc+ac\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
Vì \(\left(a-b\right)^2\ge0\) với mọi a và b
\(\left(a-c\right)^2\ge0\) với mọi a và c
\(\left(b-c\right)^2\ge0\) với mọi b và c
\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) với mọi a, b, c
Mà \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\)
Vậy a = b = c
Bài 3:
Sửa đề:
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(\Rightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+b^2y^2+2axby\)
\(\Rightarrow a^2y^2+b^2x^2=2axby\)
\(\Rightarrow a^2y^2-2axby+b^2x^2=0\)
\(\Rightarrow\left(ay-bx\right)^2=0\)
\(\Rightarrow ay-bx=0\)
\(\Rightarrow ay=bx\)
\(\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}\)

Áp dụng bất đẳng thức Cô-si ta có :
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge3\sqrt[3]{\frac{1}{a^3b^3c^3}}=\frac{3}{abc}\)
Dấu = xảy ra khi \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\) Hay \(a=b=c\) ( đề cho )
Vậy ta có đpcm : \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

Áp dụng BĐT : ( x - y)2 ≥ 0∀x,y
⇒ x2 + y2 ≥ 2xy
Ta có : a2 + b2 ≥ 2ab ( *)
b2 + c2 ≥ 2bc (**)
c2 + a2 ≥ 2ac (***)
Cộng từng vế của ( *;**;***) , ta có :
2( a2 + b2 + c2) ≥ 2( ab + bc + ac)
⇔ 3( a2 + b2 +c2) ≥ ( a + b + c)2
⇔ a2 + b2 + c2 ≥ \(\dfrac{3}{4}\)
Đặt \(a=x+\dfrac{1}{2};b=y+\dfrac{1}{2};c=z+\dfrac{1}{2}\)
Ta có: \(a^2+b^2+c^2=\left(x+\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2+\left(z+\dfrac{1}{2}\right)^2\)
\(=x^2+x+\dfrac{1}{4}+y^2+y+\dfrac{1}{4}+z^2+z+\dfrac{1}{4}\)
\(=x^2+y^2+z^2+\left(x+y+z\right)+\dfrac{3}{4}\)
\(=x^2+y^2+z^2+\dfrac{3}{2}+\dfrac{3}{4}\)
\(\Rightarrow x^2+y^2+x^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
=> đpcm
Bài 1:ta có a+b+c=0
=> a+b=-c ; a+c=-b ; b+c=-a
M= a(a+b)(a+c)= a(-c)(-b)=abc
N = b(b+c)(b+a)=b(-a)(-c)=abc
P=c(c+a)(c+b)= c(-b)(-a)=abc
=> M=N=P
vế trái= \(\left(b+c\right)^2\)-a2=(a+b+c)(b+c-a) = 2p(2p-a-a)=4p(p-a)= VP
=> đpcm