\(\dfrac{1}{2}\)<\(\dfrac{...}{9}\)<
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(\dfrac{1}{2}< \dfrac{x}{9}< \dfrac{y}{18}< \dfrac{2}{3}\)

\(\Leftrightarrow\dfrac{9}{18}< \dfrac{2x}{18}< \dfrac{y}{18}< \dfrac{12}{18}\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=10\\y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=11\end{matrix}\right.\)

b) \(\dfrac{-1}{2}< \dfrac{x}{15}< \dfrac{y}{30}< \dfrac{-2}{5}\)

\(\Leftrightarrow\dfrac{-15}{30}< \dfrac{2x}{30}< \dfrac{y}{30}< \dfrac{-12}{30}\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=-14\\y=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=-13\end{matrix}\right.\)

a: \(\dfrac{x+2}{27}=\dfrac{x}{-9}\)

=>x+2=-3x

=>4x=-2

hay x=-1/2

b: \(\dfrac{-7}{x}=\dfrac{21}{34-x}\)

=>-7(34-x)=21x

=>34-x=-3x

=>2x=-34

hay x=-17

c: \(\dfrac{-8}{15}< \dfrac{x}{40}< \dfrac{-7}{15}\)

\(\Leftrightarrow-64< 3x< -56\)

hay \(x\in\left\{-21;-20;-19\right\}\)

d: \(\dfrac{-1}{2}< \dfrac{x}{18}< \dfrac{-1}{3}\)

=>-9<x<-6

hay \(x\in\left\{-8;-7\right\}\)

a: \(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}< x< \dfrac{1}{48}-\dfrac{1}{16}+\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{6}{12}-\dfrac{4}{12}-\dfrac{3}{12}< x< \dfrac{1}{48}-\dfrac{3}{48}+\dfrac{8}{48}\)

\(\Leftrightarrow\dfrac{-1}{12}< x< \dfrac{1}{8}\)

\(\Leftrightarrow-2< 24x< 3\)

=>x=0

b: \(\Leftrightarrow\dfrac{9-10}{12}< \dfrac{x}{12}< 1-\dfrac{8-3}{12}=\dfrac{7}{12}\)

=>-1<x<7

hay \(x\in\left\{0;1;2;3;4;5;6\right\}\)

a: \(\Leftrightarrow70+18< x< 120+126+70\)

=>88<x<316

hay \(x\in\left\{89;90;...;315\right\}\)

b: \(\Leftrightarrow-\dfrac{9}{3}< x< \dfrac{8}{5}+\dfrac{9}{5}=\dfrac{17}{5}\)

=>-3<x<3,4

hay \(x\in\left\{-2;-1;0;1;2;3\right\}\)

5 tháng 3 2017

a) ta co:

1/18<x/12<y/9<1/4

=>2/36<x.3/36<y.4/36<9/36

=>x.3thuộc{3;6};y.4thuộc{4;8}

=>x thuộc{1;2};y thuộc{1:2}

b) ta co

7/8<x/40<9/10

=>70/80<x.2/40<72/80

=>x.2 =71

=>x=71/2

Giải

Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)

\(\Rightarrow\)D < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{19.20}\)

Nhận xét: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{19.20}=\dfrac{1}{19}-\dfrac{1}{20}\)

\(\Rightarrow\) D< 1- \(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)

D< 1 - \(\dfrac{1}{20}\)

D< \(\dfrac{19}{20}\)<1

\(\Rightarrow\)D< 1

Vậy D=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{5^2}\)<1

30 tháng 4 2017

A=\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

A=\(\dfrac{1}{2^2.1}+\dfrac{1}{2^2.2^2}+\dfrac{1}{3^2.2^2}+...+\dfrac{1}{50^2.2^2}\)

A=\(\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)

\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{50.50}\right)\)

Ta có :

\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\dfrac{1}{50.50}< \dfrac{1}{49.50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)\)Nhận xét :

\(\dfrac{1}{1.2}< 1-\dfrac{1}{2};\dfrac{1}{2.3}< \dfrac{1}{2}-\dfrac{1}{3};...;\dfrac{1}{49.50}< \dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{2^2}\left(1-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{4}.\dfrac{49}{50}\)<1

A<\(\dfrac{49}{200}< \dfrac{1}{2}\)

\(\Rightarrow A< \dfrac{1}{2}\)

1 tháng 5 2018

\(-\dfrac{1}{3}< \dfrac{A}{36}< \dfrac{B}{18}< -\dfrac{1}{4}\)

<=>\(-\dfrac{12}{36}< \dfrac{A}{36}< \dfrac{2B}{36}< -\dfrac{9}{36}\)

<=> -12 < x + 1 < 2(2 - y) < -9

<=> -12 < x + 1 < 4 - 2y < -9

=> x + 1 = -11 => x = -12

4 - 2y = -10 => y = 7

Vậy (x; y) = (-12; 7)

1 tháng 5 2018

−13<A36<B18<−14−13<A36<B18<−14

<=>−1236<A36<2B36<−936−1236<A36<2B36<−936

<=> -12 < x + 1 < 2(2 - y) < -9

<=> -12 < x + 1 < 4 - 2y < -9

=> x + 1 = -11 => x = -12

4 - 2y = -10 => y = 7

Vậy (x; y) = (-12; 7)

Ta có: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}< \dfrac{1}{2^2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)\(=\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{9}=\dfrac{23}{36}< \dfrac{32}{36}=\dfrac{8}{9}\). (1)

Ta lại có: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}>\dfrac{1}{2^2}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{3}-\dfrac{1}{10}=\dfrac{19}{20}>\dfrac{8}{20}=\dfrac{2}{5}\). (2)

Từ (1) và (2) suy ra đpcm.

1 tháng 4 2022

Hay quá

 

7 tháng 3 2017

bạn cứ tính 2 vế là xong mà:

a) x\(\in\){1;2;3;4;5;6;7}

b) x=0

27 tháng 3 2018

đơn giản quá!

27 tháng 3 2018

Bạn có bt làm bài 5 ko?