\(Z^+\)

b, \(3x^3-9y^3=21\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)

=-65

\(=8x^3+27y^3-8x^3+27y^3-54y^3+27\)

=27

c: \(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)

d: \(=x^3-3x^2+3x-1-x^3+1-3x\left(1-x\right)\)

\(=-3x^2+3x-3x+3x^2=0\)

bạn đưa về 1 ẩn rồi giải nhen :

a) \(\frac{x}{y}=\frac{2}{3}\Rightarrow y=\frac{3x}{2}\)

Ta có : \(x.y=54\Leftrightarrow x.\frac{3x}{2}=54\)

\(\Rightarrow3x^2=108\)

\(\Rightarrow x^2=16\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

27 tháng 3 2020
https://i.imgur.com/zwAtPMZ.jpg
20 tháng 8 2018

B1:dài quá :vv
B2:\(Q=\frac{x^2}{x^4+x^2+1}=\frac{x^2}{x^4+2x^2+1-x^2}=\frac{x^2}{\left(x^2+1\right)-x^2}=\frac{x^2}{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)

\(=\frac{x}{x^2-x+1}.\frac{x}{x^2+x+1}=\frac{2}{3}.\frac{x}{x^2+x+1}\)

\(\frac{x}{x^2-x+1}=\frac{2}{3}\Rightarrow\frac{x^2-x+1}{x}=\frac{3}{2}\Rightarrow\frac{x^2-x+1}{x}+2=\frac{3}{2}+2\Rightarrow\frac{x^2+x+1}{x}=\frac{7}{2}\)

\(\Rightarrow\frac{x}{x^2+x+1}=\frac{2}{7}\Rightarrow Q=\frac{2}{3}.\frac{2}{7}=\frac{4}{21}\)

29 tháng 8 2018

3.

Ta có: \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a+1\right)\left(a-1\right)\left(a^2+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)=a\left(a-1\right)\left(a+1\right)\left(a^2-4\right)+5a\left(a-1\right)\left(a+1\right)\)

 \(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)   

Do a(a-1)(a+1)(a-2)(a+2) là tích của 5 số hạng liên tiếp nên chia hết cho 2,3 và 5

Lại có a(a-1)(a+1) là tích của 3 số hạng liên tiếp nên chia hết cho 2,3 suy ra 5a(a-1)(a+1) chia hết cho 2,3,5

Từ đó:a(a-1)(a+1)(a-1)(a+2)+5a(a-1)(a+1) chia hết cho 2,3,5 hay a(a-1)(a+1)(a-2)(a+2)+5a(a-1)(a+1) chia hết cho 30 \(\Leftrightarrow a^5-a\) chia hết cho 30

Tương tự ta có\(b^5-b\) chia hết cho 30, \(c^5-c\) chia hết cho 30

Do đó:\(a^5-a+b^5-b+c^5-c⋮30\)

\(\Leftrightarrow a^5+b^5+c^5-\left(a+b+c\right)⋮30\)

Mà a+b+c=0 nên;

\(a^5+b^5+c^5⋮30\left(ĐCCM\right)\)

#)Giải :

a) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

\(\left\{{}\begin{matrix}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=20\\y=12\\z=42\end{matrix}\right.\)

b) Ta có : \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)

\(7y=5z\Rightarrow\frac{y}{7}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

\(\left\{{}\begin{matrix}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=20\\y=30\\z=42\end{matrix}\right.\)

c) Ta có : \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)

\(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)

\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

\(\left\{{}\begin{matrix}\frac{x}{9}=3\\\frac{y}{12}=3\\\frac{z}{20}=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=27\\y=36\\z=60\end{matrix}\right.\)

d) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{12x}{18}=\frac{12y}{6}=\frac{12z}{15}=\frac{12x+12y+12z}{18+16+5}=\frac{12\left(x+y+z\right)}{18+16+15}=\frac{12.49}{49}=12\)

\(\left\{{}\begin{matrix}\frac{12x}{18}=12\\\frac{12y}{16}=2\\\frac{12z}{15}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}12x=216\\12y=192\\12z=180\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=15\end{matrix}\right.\)

21 tháng 6 2019

Áp dụng tính chất của dãy tỉ số bằng nhau:

a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)(vì \(5x+y-z=28\))

\(x=20;y=12;z=42\)

b) \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)(vì \(x-y+z=32\))

\(x=20;y=30;z=42\)

c) \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+15}=\frac{6}{-3}=-2\)

⇒ x= -18; y= -24; z= -30

d) \(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{49}{49}=1\)

⇒ x=18; y=16; z=15

28 tháng 3 2020
https://i.imgur.com/VG57ZF2.jpg
28 tháng 3 2020
https://i.imgur.com/RVF6CXo.jpg