Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:
a) Ta có: \(25\cdot\left(\frac{-1}{5}\right)^3+\frac{1}{5}-2\cdot\left(\frac{-1}{2}\right)^2-\frac{1}{2}\)
\(=25\cdot\frac{-1}{125}+\frac{1}{5}-2\cdot\frac{1}{4}-\frac{1}{2}\)
\(=-\frac{1}{5}+\frac{1}{5}-\frac{1}{2}-\frac{1}{2}\)
\(=\frac{-2}{2}=-1\)
b) Ta có: \(35\frac{1}{6}:\left(\frac{-4}{5}\right)-46\frac{1}{6}:\left(\frac{-4}{5}\right)\)
\(=\frac{211}{6}\cdot\frac{-5}{4}-\frac{277}{6}\cdot\frac{-5}{4}\)
\(=\frac{-5}{4}\cdot\left(\frac{211}{6}-\frac{277}{6}\right)\)
\(=\frac{-5}{4}\cdot\left(-11\right)=\frac{55}{4}\)
c) Ta có: \(\left(\frac{-3}{4}+\frac{2}{5}\right):\frac{3}{7}+\left(\frac{3}{5}+\frac{-1}{4}\right):\frac{3}{7}\)
\(=\frac{-7}{20}\cdot\frac{7}{3}+\frac{7}{20}\cdot\frac{7}{3}\)
\(=\frac{7}{3}\cdot\left(-\frac{7}{20}+\frac{7}{20}\right)=\frac{7}{3}\cdot0=0\)
d) Ta có: \(\frac{7}{8}:\left(\frac{2}{9}-\frac{1}{18}\right)+\frac{7}{8}\cdot\left(\frac{1}{36}-\frac{5}{12}\right)\)
\(=\frac{7}{8}\cdot6+\frac{7}{8}\cdot\frac{-7}{18}\)
\(=\frac{7}{8}\cdot\left(6+\frac{-7}{18}\right)\)
\(=\frac{7}{8}\cdot\frac{101}{18}=\frac{707}{144}\)
e) Ta có: \(\frac{1}{6}+\frac{5}{6}\cdot\frac{3}{2}-\frac{3}{2}+1\)
\(=\frac{1}{6}+\frac{15}{12}-\frac{3}{2}+1\)
\(=\frac{2}{12}+\frac{15}{12}-\frac{18}{12}+\frac{12}{12}\)
\(=\frac{11}{12}\)
f) Ta có: \(\left(-0,75-\frac{1}{4}\right):\left(-5\right)+\frac{1}{15}-\left(-\frac{1}{5}\right):\left(-3\right)\)
\(=\left(-1\right):\left(-5\right)+\frac{1}{15}-\frac{1}{15}\)
\(=\frac{1}{5}\)

Bài 1:
A = \(\frac15\) + \(\frac{3}{17}\) - \(\frac43\) + (\(\frac45\) - \(\frac{3}{17}\) + \(\frac13\)) - \(\frac17\) + (- \(\frac{14}{30}\))
A = \(\frac15\) + \(\frac{3}{17}\) - \(\frac43\) + \(\frac45\) - \(\frac{3}{17}\) + \(\frac13\) - \(\frac17\) - \(\frac{14}{30}\)
A = (\(\frac15\) + \(\frac45\)) + (\(\frac{3}{17}\) - \(\frac{3}{17}\)) - (\(\frac43-\frac13\)) - \(\frac{30}{210}\) - \(\frac{98}{210}\)
A = 1 + 0 - 1 - (\(\frac{30}{210}+\frac{98}{210}\))
A = 1 - 1 - \(\frac{228}{210}\)
A = 0 - \(\frac{128}{210}\)
A = - \(\frac{64}{105}\)
Bài 2:
B= (\(\frac58\) - \(\frac{4}{12}\) + \(\frac32\)) - (\(\frac58\) + \(\frac{9}{13}\)) - (\(\frac{-3}{2}\)) + \(\frac{7}{-15}\)
B = \(\frac58\) - \(\frac{4}{12}\) + \(\frac32\) - \(\frac58\) - \(\frac{9}{13}\) + \(\frac32\) - \(\frac{7}{15}\)
B = (\(\frac58\) - \(\frac58\)) + (\(\frac32\) + \(\frac32\)) - (\(\frac13\) + \(\frac{9}{13}\) + \(\frac{7}{15}\))
B = 0 + 3 - (\(\frac{65}{195}\) + \(\frac{135}{195}\) + \(\frac{91}{195}\))
B = 3 - (\(\frac{200}{195}\) + \(\frac{91}{195}\))
B = 3 - \(\frac{97}{65}\)
B = \(\frac{195}{65}\) - \(\frac{97}{65}\)
B = \(\frac{98}{65}\)
a) \(\frac{-1}{24}-\left[\frac{1}{4}-\left(\frac{1}{2}-\frac{7}{8}\right)\right]\)
= \(\frac{-1}{24}-\left[\frac{6}{24}-\left(\frac{12}{24}-\frac{21}{24}\right)\right]\)
= \(\frac{-1}{24}-\left[\frac{6}{24}-\frac{-9}{24}\right]\)
= \(\frac{-1}{24}-\frac{15}{24}\)
= \(\frac{-16}{24}\) = \(\frac{-2}{3}\)
b) \(\left(\frac{5}{7}-\frac{7}{5}\right)-\left[\frac{1}{2}-\left(-\frac{2}{7}-\frac{1}{10}\right)\right]\)
= \(\left(\frac{50}{70}-\frac{98}{70}\right)-\left[\frac{35}{70}-\left(-\frac{20}{70}-\frac{7}{70}\right)\right]\)
= \(\frac{-48}{70}-\left[\frac{35}{70}-\left(-\frac{20}{70}-\frac{7}{70}\right)\right]\)
= \(\frac{-48}{70}-\left[\frac{35}{70}-\frac{-27}{70}\right]\)
= \(\frac{-48}{70}-\frac{62}{70}\)
= \(\frac{-110}{70}=\frac{-11}{7}\)