K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a: AE=AC-CE=16-13=3(cm)

AD=AB-BD=8-2=6(cm)

Xét ΔAED và ΔABC có

AE/AB=AD/AC

\(\widehat{A}\) chung

Do đó: ΔAED∼ΔABC

b: Ta có: ΔAED∼ΔABC

nên AE/AB=AD/AC

hay AB/AC=AE/AD

Xét ΔABE và ΔACD có

AB/AC=AE/AD

\(\widehat{BAE}\) chung

Do đó: ΔABE∼ΔACD

Suy ra: \(\widehat{ABE}=\widehat{ACD}\)

1 tháng 6 2020

tự làm là hạnh phúc của mỗi công dân.

28 tháng 2 2020

tui cx cần câu này nhưng ko có ai tl kìa

11 tháng 9 2017

a) △ABC△ABC có AD phân giác:

=>BDDC=ABAC=>BDDC=ABAC

△BEQ △BNP△BEQ △BNP

=>BEEN=BQQP=>BEEN=BQQP

△BQM △BAC△BQM △BAC

=>BQQM=ABAC=BDDC=BQQP=BEEN=>BQQM=ABAC=BDDC=BQQP=BEEN

=>BEEN=BDDC=>BEEN=BDDC

Câu b: C/m tương tự DF//AB

dùng tính chất tỉ lệ thức, ....

=>đpcmbanhqua

a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ

nên AMDN là hình chữ nhật

Suy ra: AD=MN

b: Xét tứ giác AMHD có góc AMD=góc AHD=90 độ

nên AMHD là tứ giác nội tiếp

=>A,M,H,D cùng thuộc 1 đường tròn (1)

Xét tứ giác AMDN có góc AMD+góc AND=180 độ

nên AMDN là tứ giác nội tiếp

=>A,M,D,N cùng thuộc 1 đường tròn(2)

Từ (1) và (2) suy ra A,M,H,D,N cùg thuộc 1 đường tròn

=>AMHN là tứ giác nội tiếp

=>góc AHM=90 độ

27 tháng 12 2021

a) Xét tứ giác AMIN có:

∠(MAN) = ∠(ANI) = ∠(IMA) = 90o

⇒ Tứ giác AMIN là hình chữ nhật (có 3 góc vuông).

b) ΔABC vuông có AI là trung tuyến nên AI = IC = BC/2

do đó ΔAIC cân có đường cao IN đồng thời là đường trung tuyến

⇒ NA = NC.

Mặt khác ND = NI (t/c đối xứng) nên ADCI là hình bình hành

Lại có AC ⊥ ID (gt). Do đó ADCI là hình thoi.

c) Ta có: AB2 = BC2 – AC2 (định lí Py-ta-go)

= 252 – 202 ⇒ AB = √225 = 15 (cm)

Vậy SABC = (1/2).AB.AC = (1/2).15.20 = 150 (cm2)

d) Kẻ IH // BK ta có IH là đường trung bình của ΔBKC

⇒ H là trung điểm của CK hay KH = HC (1)

Xét ΔDIH có N là trung điểm của DI, NK // IH (BK // IH)

Do đó K là trung điểm của DH hay DK = KH (2)

Từ (1) và (2) ⇒ DK = KH = HC ⇒ DK/DC= 1/3.

a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ

nên AMDN là hình chữ nhật

Suy ra: AD=MN

b: Xét tứ giác AMHD có góc AMD=góc AHD=90 độ

nên AMHD là tứ giác nội tiếp

=>A,M,H,D cùng thuộc 1 đường tròn (1)

Xét tứ giác AMDN có góc AMD+góc AND=180 độ

nên AMDN là tứ giác nội tiếp

=>A,M,D,N cùng thuộc 1 đường tròn(2)

Từ (1) và (2) suy ra A,M,H,D,N cùg thuộc 1 đường tròn

=>AMHN là tứ giác nội tiếp

=>góc AHM=90 độ

22 giờ trước (16:22)

a: Xét ΔBAD có BA=BD

nên ΔBAD cân tại B

Ta có: \(\hat{BAD}+\hat{CAD}=\hat{BAC}=90^0\)

\(\hat{BDA}+\hat{HAD}=90^0\) (ΔHAD vuông tại H)

\(\hat{BAD}=\hat{BDA}\) (ΔBAD cân tại B)

nên \(\hat{CAD}=\hat{HAD}\)

=>AD là phân giác của góc HAC

b: Xét ΔAHD và ΔAED có

AH=AE

\(\hat{HAD}=\hat{EAD}\)

AD chung

Do đó: ΔAHD=ΔAED

=>\(\hat{AHD}=\hat{AED}\)

=>\(\hat{AED}=90^0\)

=>ED⊥AC
mà HK⊥AC
nên HK//ED

=>HKED là hình thang

c: ΔAHD=ΔAED

=>DH=DE

=>D nằm trên đường trung trực của HE(1)

Ta có: AH=AE

=>A nằm trên đường trung trực của HE(2)

Từ (1),(2) suy ra AD là đường trung trực của HE

=>AD⊥HE

Xét ΔAEH có

HK,AD là các đường cao

HK cắt AD tại I

Do đó: I là trực tâm của ΔAEH

=>EI⊥AH tại F

mà HC⊥HA

nên EF//HC

=>EFHC là hình thang

Hình thang EFHC có EF⊥FH

nên EFHC là hình thang vuông