K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2018

đề của bạn hơi có vấn đề.Nếu n=5 thì n+2=7,n-2=3.

7 không chia hết cho 3
 

10 tháng 12 2015

Ta có:

     87-218

=221-218

=218x(23-1)

=218x7

=217x14 chia hết cho 14

  Vậy 87-218 chia hết cho 14

 Tick cho mik nha!!

10 tháng 12 2015

pham minh quang dung

12 tháng 2 2017

bạn có sách toán nâng cao và các chuyên đề không

12 tháng 2 2017

ket ban

25 tháng 3 2019

* m^2+n^2 chia hết cho 3 thì m,n chia hết cho 3

Giả sử m không chia hết cho 3 => m^2 o chia hết cho 3 mà m^2 chia 3 dư 0 hoặc 1 => m^2 chia 3 dư 1 => n^2 chia 3 dư 2 (vô lý)

=>giả sử sai => m chia hết cho 3 

                         Chứng minh tương tự n chia hết cho 3

* m,n chia hết cho 3 => m^2+n^2  chia hết cho 3 

Vì m,n chia hết cho 3 => m^2, n^2 chia hết cho 3 => m^2+n^2 chia hết cho 3

15 tháng 11 2017

a) Ta có \(8^2=64\)

              \(8^4=8^2=64^2=...6\) (tận cùng là 6)

=>        \(\left(8^4\right)^n=\left(...6\right)^n=...6\)

Ta có: \(8^{102}=8^{100}.8^2=\left(8^4\right)^{25}.8^2=\left(...6\right).64=...4\)

Tương tự: \(\left(2^4\right)^n=16^n=...6\)

  => \(2^{102}=2^{100}.2^2=\left(2^4\right)^{25}.2^2=\left(...6\right).4=...4\)

Vậy \(8^{102}\) và \(2^{102}\) đều có chữ số tận cùng là 4 => Hiệu của chúng có tận cùng là 0 => Hiệu chia hết cho 10

b) \(2^{100}=\left(2^4\right)^{25}=16^{25}=...6\) 

c) \(7^{1991}=\left(7^4\right)^{497}.7^3\) (vì 1991 = 4.497 + 3

               \(=\left(...1\right)^{479}.7^3=\left(...1\right).343=...3\)

17 tháng 11 2017

jEm có cách khác cô ạ !

Bài 1 .

Giải : Ta thấy một số có tận cùng bằng 6 nâng lên lũy thừa nào ( khác 0 ) cũng tận cùng bằng 6 ( vì nhân hai số có tận cùng bằng 6 với nhau , ta được số tận cùng bằng 6 ) . Do đó ta biến đổi như sau :

8102 = ( 84 )25 . 82 = ( ...6 )25 . 64 = ( ...6 ) . 64 = ...4,

2102 = ( 24 )25 . 22 = 1625 . 4 = ( ...6 ) . 4 = ...4 .

Vậy 8102 - 2102 tận cùng bằng 0 nên chia hết cho 10.

Ta có nhận xét : Để tìm chp số tận cùng của một lũy thừa , ta chú ý rằng :

- Các số có tận cùng bằng 0 , 1 , 5 , 6 nâng lên lũy thừa nào ( khác 0 ) cũng tận cùng bằng 0 , 1 , 5 , 6 ;

- Các số có tận cùng bằng 2 , 4 , 8 nâng lên lũy thừa 4 thì được số tận cùng bằng 6 ;

- Các số có tận cùng bằng 3 , 7 , 9 nâng lên lũy thừa 4 thì được số tận cùng bằng 1 .

Bài 2 .

Giải : Chú ý rằng : 210 = 1024 , bình phương của số có tận cùng bằng 24 thì tận cùng bằng 76 , số có tận cùng bằng 76 nâng lên lũy nào ( khác 0 ) cũng tận cùng 76 . Do đó :

2100 = ( 210 )10 = 102410 = ( 10242 )5 = ( ...76 )5 = ...76

Vậy hai chữ số tận cùng của 2100 là 76.

Bài 3 .

Giải : Ta thấy : 74 = 2401 , số tận cùng bằng 01 nâng lên lũy thừa nào cũng tận cùng bằng 01 . Do đó :

71991 = 71988 . 73 = ( 74 )497 . 343 = ( ...01 )497 . 343

= ( ...01 ) . 343 = ...43

Vậy 71991 có hai chữ số tận cùng là 43 .

Ta có nhận xét : Để tìm hai chữ số tận cùng của một lũy thừa , cần chú ý đến những số đặc biệt :

- Các số có tận cùng bằng 01 , 25 , 76 nâng lên lũy thừa nào ( khác 0 ) cũng tận cùng bằng 01 , 25 , 76 ;

- Các số 320 ( hoặc 815 ) , 74 , 512 , 992 có tận cùng bằng 01 ;

- Các số 220 , 65 , 184 , 242 , 684 , 742 có tận cùng bằng 76 ;

- Số 26n ( n > 1 ) có tận cùng bằng 76.