Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Hinh thi tu ve nka. Minh chi lam thoi.
a. Xet 2 tam giac vuog: HAB va KAC co:
AB=AC ( ABC can tai A)
A chung
=> HAB=KAC ( cah huyen-goc nhon )
=> AH=AK (2 cah tuog ung)
b. Ta co: KIB=HIC ( doi.d )
Trog tam giac KIB co: KIB+IKB+KBI=180 ( dinh.l)
Trong tam giac HIC co: HIC+IHC+HCI=180 (dinh.l)
Ma: IKB=IHC (=90)
KIB=HIC ( CMT )
=> KBI = HCI
Mat khac, ta co: AK+KB=AB ; AH+HC=AC
Ma: AK=AH(CMT)
AB=AC ( ABC can tai A)
=> KB=HC
Xet 2 tam giac vuog: KIB va HIC co:
KB=HC (CMT)
KBI=HCI( CMT)
Suy ra: KIB=HIC ( cah huyen goc nhon )
=> KI = HI ( 2 cah tuog ung)
Ta thay HB cat AI tai I => AI nam giua AB va AC (1)
Xet 2 tam giac vuog: KIA va HIA co:
AI chug
KI=HI ( CMT )
Suy ra: KIA=HIA ( cah huyen-cah goc vuog)
=> KAI=HAI (2 cah tuog ug) (2)
Tu (1) va (2) suy ra:
AI la phan giac cua goc A ( BAC )
![](https://rs.olm.vn/images/avt/0.png?1311)
mình nghĩ là BH vuông góc với AE thì đúng hơn
Nếu như thế thì làm như thế này
Hình tự vẽ
Tam giác ABC vuông cân tại A => AB=AC;góc ABC= góc ACB
Xét tam giác ABM và tam giác ACM có
AB=AC(cmt)
AM chung
MA=MC(gt)
=> Tam giác ABM = tam giác ACM (c.c.c)
=> Góc BMA= góc CMA (t.ứng)
mà góc BMA + góc CMA =180 độ
=> góc BMA=góc CMA=90 độ
=> AM vuông góc với BC
........................................................phần này mình làm trước để tí câu c cho dễ làm.......................................
a,Xét tam giác HAB và tam giác KCA có:
AB=AC(gt)
góc AHB = góc CKA(=90 độ)
góc ABH = góc CAK( 2 góc nhọn có cạnh tương ứng vuông góc bằng nhau)
=> Tam giác HAB = tam giác KCA(ch-gn)
=> BH=AK(t.ứng)
c; Tam giác ABC vuông cân tại và góc A =90 độ => góc ABM = góc ACM(=45 độ)
Tam giác ACM vuông tại M => góc MAC=góc AMC - góc MCA =90 độ - 45 độ =45 độ
Ta có : \(\widehat{MBH}=\widehat{MBA}-\widehat{HAB}=45^o-\widehat{HAB}\)
\(\widehat{MAK}=\widehat{MAC}-\widehat{EAC}=45^o-\widehat{EAC}\)
mà \(\widehat{HBA}=\widehat{KAC}\left(vì\Delta HAB=\Delta KCA\right)\Rightarrow\widehat{MBH}=\widehat{MAK}\)
Xét tam giác MBH và tam giác MAK có
BH=AK(câu b)
góc MBH = góc MAK(cmt)
góc BHM =góc AKM(2 góc nhọn có cạnh tương ứng vuông góc bằng nhau)
=> Tam giác MBH = tam giác MAK (g.c.g)
d,Tam giác MBH = tam giác MAK(câu c)=> MH=MK(t.ứng)
=>Tam giác HMK cân tại M(1)
Tam giác BHM= tam giác AKM(câu c)=> góc BNH = góc AMK
=> Góc AMK - 90 độ = góc BMH - 90 độ
=> góc AMH = góc EMK
=> góc HME + góc EKM = góc HME + góc AMH=90 độ(2)
Từ (1)(2) => Tam giác MHK vuông cân tại M
![](https://rs.olm.vn/images/avt/0.png?1311)
a1, Xét tam giác AMB và tam giác AMC có :
AM chung
B=C(tam giác ABC cân )
AB=AC9tam giác ABC cân)
Do đó tam giác AMB=tam giác AMC(c.g.c)
a2, Vì tam giác AMB=tam giác AMC( cmt)
=>Bam=Cam ( 2 góc tương ứng)
=>AM là tia p/g góc A
Mình ms làm xong câu a thôi đợi mình nghĩ nót câu kia đã. bạn tick nha mình đảm bảo đúng
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét \(\Delta\)ACE và \(\Delta\)AKE có :
- CÂE = KÂE ( vì AE là phân giác )
- AE : cạnh chung
- Góc ACE = góc AKE ( = 90 độ )
\(\Rightarrow\)\(\Delta\)ACE = \(\Delta\)AKE ( cạnh huyền - góc nhọn )
\(\Rightarrow\)AC = AK ( hai cạnh tương ứng ) ( đpcm )
\(\Rightarrow\)A nằm trên đường trung trực của CK ( 1 )
Ta lại có : CE = KE ( vì \(\Delta\)ACE = \(\Delta\)AKE )
\(\Rightarrow\)E nằm trên đường trung trực của CK ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)AE\(\perp\)CK ( đpcm )
tự vẽ hình-câu a bạn kia làm r thì t làm câu b tiếp nha :)
b) Tam giác BEK có: góc B + góc E + góc K =180 độ
Tam giác KEA có : góc K+góc A+góc E=180 đôk
Mà góc EKA=BKE=90 độ, góc EBK=Góc KAE=30 độ
=> Góc BEK= góc KEA
Xét tam giác BEK và tam giác AEK, ta có:
EK là cạnh chung
góc EKA=BKE=90 độ
Góc BEK= góc KEA(cmt)
Vậy tam giác BEK = tam giác AEK(g-c-g)
=> AK=BK(cặp cạnh t/ứng)
BE=AE(cặp cạnh t/ứng)
c) Áp dụng định lí pytago vào tam giác vuông CEA. ta có:
EC2+CA2=AE2=> AE2-EC2=CA2=> AE2>CA2=> AE>CA
mà AE=BE(cmt) => BE>AC
câu d t chịu >:
![](https://rs.olm.vn/images/avt/0.png?1311)
a) xét \(\Delta\)AMB và \(\Delta\)ANC có:
AM=AN (tam giác AMN cân tại A)
\(\widehat{AMB}=\widehat{ANC}\)(tam giác AMN cân tại A)
MB=CN (gt)
=> \(\Delta AMB=\Delta ANC\left(cgc\right)\)
b) xét \(\Delta\)MBH và \(\Delta\)NCK có:
\(\widehat{HMB}=\widehat{KNC}\)(tam giác AMN cân tại A)
MB=CN (gt)
\(\widehat{HBM}=\widehat{KCN}=90^o\)
=> \(\Delta MBH=\Delta NCK\left(gcg\right)\)
Vì tam giác ABC là tam giác cân , suy ra AB=AC ; góc B =góc C.
Xét tam giác ABH và tam giác AKC, có
AB = AC (cmt)
A là góc chung
K = H ( = 90 độ)
Suy ra tam giác ABH = tam giác AKC(g-c-g)
suy ra BH = CK ( hai cạnh tương ứng )
suy ra góc ABH = góc ACK ( hai góc tương ứng )
Xét tam giác KHB và tam giác KHC , có
CK = BH ( cmt)
Góc ABH = góc ACK ( cmt)
K = H ( = 90 độ )
Suy ra tam giác KHB = tam giác KHC ( g-c-g)
Suy ra KB = HC ( hai góc tương ứng)
Mà AB = BK + AK
AC = AH + CH
Suy ra AK = AH