Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, bn chỉ cần thay m =-2 vào pt là đc
b, thay x=-2 vào pt tac đc 4+6m+m^2-3m=0
m^2+3m+4=0
m=-1 và m=-4
với m=-1 thì x=2 với m=-4 thì vo nghiệm
vậy nghiệm còn lại là 2
c bn sd đen ta ' là đc
d - bn viết hệ thức viet
x1^2+x2^2=8
(X1+x2)^2-2x1.x2=8
- thay viet vào

a) \(\Delta'=1^2-m^2+3m=-\left(m^2-3m-1\right)\)
PT có 2 nghiệm PB \(\Leftrightarrow-\left(m^2-3m-1\right)>0\)
\(m^2-3m-1< 0\Leftrightarrow\left(m-\dfrac{3}{2}\right)^2>\dfrac{15}{4}\)
\(m-\dfrac{3}{2}>\dfrac{\sqrt{15}}{2}\Rightarrow m>\dfrac{\sqrt{15}+3}{2}\)
b) Vi-ét
\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m^2-3m\end{matrix}\right.\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4-2m^2+6m\)
\(\Rightarrow-2m^2+6m+4=8\)
Tính m ra
c) \(x^2_1+x^2_2=-2m^2+6m+4\)
\(=-2\left(m^2-3m-2\right)\)
\(=-2\left(m-\dfrac{3}{2}\right)^2-\dfrac{17}{4}\)
Lập luận để tìm ra GTNN

b) \(\Delta=4-4\left(-m\right)=4+4m\). pt có nghiệm <=> \(\Delta\ge0\Leftrightarrow4+4m\ge0\Leftrightarrow m\ge-1\)
pt có nghiệm với mọi m>=-1 => áp dụng hệ thức vi ét ta có: \(x1+x2=-2\); \(x1.x2=-m\);
\(x1^4+x2^4=\left(x1+x2\right)^4-4x1^3x2-6x1^2x^2_2-4x1x2^3=16-2x1.x2\left(2x^2+3x1.x2+2x^2_2\right)\)
\(=16+2m\left[2\left(x1^2+2x1.x2+x2^2\right)-x1.x2\right]=16+2m\left[2\left(x1+x2\right)^2+m\right]=16+2m.4+2m^2=2m^2+8m+16\)
\(=2\left(m^2+4m+8\right)=2\left(m^2+4m+4+4\right)=2\left(m+2\right)^2+8\)
\(m\ge-1\Rightarrow m+2\ge1\Leftrightarrow2\left(m+2\right)^2+8\ge10\)=> Min P=10 <=> m=-1
Sao ở khúc 16 + 2m [2 (x1 + x2) ^ 2 + m] = 16 + 2*4 +2m vậy?