K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a: Xét tứ giác OAMB có \(\hat{OAM}+\hat{OBM}=90^0+90^0=180^0\)

nên OAMB là tứ giác nội tiếp

=>O,A,M,B cùng thuộc một đường tròn

b: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có

OM chung

OA=OB

Do đó: ΔOAM=ΔOBM

=>MA=MB

c: OA=OB

=>O nằm trên đường trung trực của AB(1)

ta có: MA=MB

=>M nằm trên đường trung trực của AB(2)

Từ (1),(2) suy ra OM là đường trung trực của AB

d: OM là đường trung trực của AB

=>OM⊥AB tại H và H là trung điểm của AB

Xét ΔOAM vuông tại A có AH là đường cao

nên \(OH\cdot OM=OA^2=R^2\) không đổi

Bài 2:

a; Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đó:ΔAEB vuông tại E

=>BE⊥MA tại E

Xét (O) có

ΔAFB nội tiếp

AB là đường kính

Do đó: ΔAFB vuông tại F

=>AF⊥MB tại F
b: Xét tứ giác MEHF có \(\hat{MEH}+\hat{MFH}=90^0+90^0=180^0\)

nên MEHF là tứ giác nội tiếp đường tròn đường kính MH

=>M,E,H,F cùng thuộc một đường tròn

c: Vì MEHF nội tiếp đường tròn đường kính MH

mà I là trung điểm của MH

nên IM=IE=IF=IH

Gọi K là giao điểm của MH và AB

Xét ΔMAB có

AF,BE là các đường cao

AF cắt BE tại H

Do đó: H là trực tâm của ΔAMB

=>MH⊥AB tại K

IE=IH

=>ΔIEH cân tại I

=>\(\hat{IEH}=\hat{IHE}\)

=>\(\hat{IEH}=\hat{KHB}\)

\(\hat{IEO}=\hat{IEH}+\hat{OEH}\)

\(=\hat{KHB}+\hat{OBH}=\hat{KHB}+\hat{KBH}=90^0\)

=>IE⊥OE

d: Xét ΔIEO và ΔIFO có

IE=IF

OE=OF

IO chung

Do đó: ΔIEO=ΔIFO

=>\(\hat{IEO}=\hat{IFO}=90^0\)

=>I,E,O,F cùng thuộc một đường tròn


Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

3 tháng 12 2018

Tính tỉ số \(\frac{OE}{OM}\)

20 tháng 12 2023

loading... loading... 

10 tháng 6 2015

a, (O): góc BAC=90 độ (góc nt chắn nửa đường tròn).

(I): góc AEH=90(góc nt chắn nửa đường tròn). góc ADH=90(góc nt chắn nửa đường tròn) => tg AEHD là hcn(có 3 góc vuông)

b) (I): góc ADE=góc AHE( nt cùng chắn cung AE)

ta lại có:góc AHE=góc ABH( cùng phụ với góc BAH.) => ADE=ABH

=> tg BEDC nội tiếp (góc trong tại 1 đỉnh = góc ngoài tại đỉnh đối diện)

c, tg AEHD là hcn; AH cắt AD tại I => IA=IH=IE=ID

tam giác ADH: DI là trung tuyến

tam giác: AMH: MI là trung tuyến => D,M,I thẳng hàng. mà E,M,I thẳng hàng=> D,M,E thẳng hàng.

Nhớ L I K E nha