Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bạn xem lại đề câu c nhé, mình thấy nó có j đó hơi sai, hình bạn tự vẽ nhá :D
câu a
tam giác def và tam giác hed có
góc edf = góc dhe = 90 độ
chung góc def
=> tam giác def ~ tam giác hed (gg)
câu b
tam giác dfe và tam giác hfd có
góc edf = góc dhf = 90 độ
chung góc f
=> tam giác dfe ~ tam giác hfd (gg)
\(=>\dfrac{df}{hf}=\dfrac{ef}{fd}\\ =>df^2=hf.ef\)
chúc may mắn :)

D E F 6 9 H
a.
Xét \(\Delta DEF\) và \(\Delta HED\) có:
góc D = H = 90o
góc E chung
Do đó: tam giác DEF ~ HED ( g.g)
b.
Xét tam giác FHD và FDE có:
góc F chung
góc H = góc D = 90o
Do đó: tam giác FHD~FDE
=> \(\dfrac{DF}{FH}=\dfrac{EF}{DF}\Rightarrow DF^2=FH.EF\)
xét tam giác DEF và tam giác HED có:
góc EDF=EHD(=90 độ)
góc E chung
suy ra hai tam giác này đồng dạng
xét tam giác DEF và HDF có
góc EDF=DHF
suy ra 2 tam giác này đồng dạng
suy ra DF PHẦN EF=FH PHẦN DF
SUY RA DF2=FH*EF

a,Xét \(\Delta\)DEF và \(\Delta\)HED có:
góc EDF=góc EHD(=90 độ)
góc E chung
\(\Rightarrow\)\(\Delta\)DEF đồng dạng \(\Delta\)HED(g.g)
b,Xét \(\Delta\)DEF và \(\Delta\)HDF có:
góc EDF=góc DHF(=90 độ)
góc F chung
\(\Rightarrow\)\(\Delta\)DEF đồng dạng \(\Delta\)HDF(g.g)
\(\Rightarrow\)\(\dfrac{DF}{EF}=\dfrac{FH}{DF}\)(đ/n)
\(\Rightarrow\)DF\(^2\)=FH.EF

a:
- Vì \(E F \parallel A M\), theo định lý Ta-lét ta có:
\(\frac{D E}{A M} = \frac{D F}{A M} = 1\)
nên \(D E = A M\) và \(D F = A M\)
suy ra: \(D E + D F = A M + A M = 2 A M .\)
b:Vì \(E F \parallel A M\) và \(A M\) là trung tuyến, ta suy ra \(N\) là trung điểm của \(E F\) theo tính chất đường trung bình.
c: Ta có:
\(S_{F D C}^{2} = k^{4} S_{A M C}^{2}\) \(S_{A M C} \cdot S_{F N A} = S_{A M C} \cdot k S_{F D C}\)
Vậy ta cần chứng minh:
\(k^{4} S_{A M C}^{2} \geq k S_{A M C} \cdot S_{F D C}\)
Chia cả hai vế cho \(S_{A M C}\) (với \(S_{A M C} \neq 0\)):
\(k^{4} S_{A M C} \geq k S_{F D C}\)
Thế \(S_{F D C} = k^{2} S_{A M C}\) vào:
\(k^{4} S_{A M C} \geq k \cdot k^{2} S_{A M C}\) \(k^{4} S_{A M C} \geq k^{3} S_{A M C}\)
Chia cả hai vế cho \(S_{A M C}\) (giả sử \(S_{A M C} > 0\)):
\(k^{4} \geq k^{3}\)
Điều này đúng vì \(k \geq 1\) theo tỉ số đồng dạng.
4o
A B C D K E F H
a, ABCD là hình thang (gt) => AB // CD (đn)
=> OA/OC = OB/OD (talet) (1)
có AF // BC (gt) => FO/OB = AO/OC (talet) ; có BE // AD (gt) => OE/OA = OB/OD (talet) và (1)
=> FO/OB = OE/OA ; xét tg AOB
=> FE // AB (talet đảo)
b, có DA // BE (Gt) ; ^DAO slt ^OEB ; ^ADO slt ^OBE
=> ^DAO = ^OEB và ^ADO = ^OBE (đl)
xét tg ADO và tg EBO
=> tg ADO đồng dạng với tg EBO (g-g)
=> AO/OE = DO/OB (2)
+ AB // FE (câu a) => AO/OE = AB/EF (talet) ; có AB // DC (Câu a) => DO/OB = CD/AB (talet) và (2)
=> AB/EF = CD/AB
=> AB^2 = EF.CD
c, kẻ AH _|_ BD ; CK _|_ BD
có S1 = OB.AH/2 ; S2 = OD.CK/2 => S1.S2 = OB.AH.OD.CK/4
CÓ S3 = AH.DO/2 ; S4 = CK.OB/2 => C3.C4 = OB.AH.OD.CK/4
=> S1.S2 = S3.S4

A A B B C C M M D D E E F F N N F' F'
a) Em tham khảo tại đây.
b) Trên tia đối tia FD, lấy điểm F' sao cho FF' = DE
Theo câu a ta có DF' = 2AM (1)
Lại có tứ giác ANDM có AN // DM, AM // DN nên ANDM là hình bình hành.
Vậy nên AM = ND (2)
Từ (1) và (2) suy ra NF' = ND
Lại có F'F = DE nên FN = EN hay N là trung điểm EF.
c) Ta có \(S^2_{FDC}\ge16S_{AMC}.S_{FNA}\Leftrightarrow\frac{S_{AMC}}{S_{FDC}}.\frac{S_{FNA}}{S_{FDC}}\le\frac{1}{16}\)
Ta thấy \(\frac{S_{AMC}}{S_{FDC}}=\left(\frac{MC}{DC}\right)^2;\frac{S_{FNA}}{S_{FDC}}=\left(\frac{AF}{FC}\right)^2\)
nên ta cần chứng minh \(\frac{MC}{DC}.\frac{AF}{FC}\le\frac{1}{4}\Rightarrow\frac{MC}{DC}.\left(1-\frac{AC}{FC}\right)\le\frac{1}{4}\)
\(\Rightarrow\frac{MC}{DC}.\left(1-\frac{MC}{DC}\right)\le\frac{1}{4}\)
Đặt \(\frac{MC}{DC}=x\Rightarrow x\left(1-x\right)=-x^2+x=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{1}{4}\)
Vậy ta đã chứng minh xong.