Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1. B) m ≠ ±3
Câu 2. B) 3
Câu 3. C) 8cm
Câu 4. C) AB.DF = AC.DE
Câu 5. B) AC = 6cm
không hiểu chỗ nào ib mình giảng

- Sử dụng định lý Thales cho các đường thẳng song song:
- Vì \(D F\) song song với \(N P\) (\(D F \parallel N P\)) và \(F\) thuộc \(M P\), \(D\) thuộc \(M N\), ta có tam giác \(M D F\) đồng dạng với tam giác \(M N P\).
- Từ đó, theo định lý Thales, ta có tỉ lệ:\(\frac{M D}{M N} = \frac{M F}{M P} = \frac{D F}{N P}\)
- Tương tự, vì \(E G\) song song với \(N P\) (\(E G \parallel N P\)) và \(G\) thuộc \(M P\), \(E\) thuộc \(M N\), ta có tam giác \(M E G\) đồng dạng với tam giác \(M N P\).
- Từ đó, theo định lý Thales, ta có tỉ lệ:\(\frac{M E}{M N} = \frac{M G}{M P} = \frac{E G}{N P}\)
- Sử dụng giả thiết \(M D = N E\):
- Ta có \(M N = M D + D E + E N\).
- Thay \(N E = M D\) vào, ta có \(M N = M D + D E + M D = 2 M D + D E\).
- Từ đó suy ra \(D E = M N - 2 M D\).
- Cũng từ \(M N = 2 M D + D E\), ta có \(M D = \frac{M N - D E}{2}\).
- Và \(N E = \frac{M N - D E}{2}\).
- Xét tỉ lệ của các đoạn thẳng:
- Từ \(\frac{M D}{M N} = \frac{D F}{N P}\), ta có \(D F = N P \cdot \frac{M D}{M N}\).
- Từ \(\frac{M E}{M N} = \frac{E G}{N P}\), ta có \(E G = N P \cdot \frac{M E}{M N}\).
- Sử dụng giả thiết \(G I \parallel M N\):
- Vì \(G I \parallel M N\) và \(I\) thuộc \(N P\), \(G\) thuộc \(M P\), ta có tam giác \(P G I\) đồng dạng với tam giác \(P N M\).
- Từ đó, theo định lý Thales, ta có tỉ lệ:\(\frac{P G}{P M} = \frac{P I}{P N} = \frac{G I}{M N}\)
- Liên hệ các đoạn thẳng \(D F\) và \(I P\):
- Chúng ta cần chứng minh \(D F = I P\).
- Từ \(D F = N P \cdot \frac{M D}{M N}\), ta cần chứng minh \(I P = N P \cdot \frac{M D}{M N}\).
- Điều này có nghĩa là ta cần chứng minh \(\frac{P I}{P N} = \frac{M D}{M N}\).
- Chúng ta biết \(\frac{P I}{P N} = \frac{P G}{P M}\). Vậy ta cần chứng minh \(\frac{P G}{P M} = \frac{M D}{M N}\).
- Tính toán \(P G\):
- Ta có \(M G\) là một đoạn thẳng trên \(M P\).
- Ta có \(M P = M F + F G + G P\) hoặc \(M P = M G + G P\).
- Từ \(\frac{M E}{M N} = \frac{M G}{M P}\), ta có \(M G = M P \cdot \frac{M E}{M N}\).
- Do đó, \(P G = M P - M G = M P - M P \cdot \frac{M E}{M N} = M P \left(\right. 1 - \frac{M E}{M N} \left.\right) = M P \cdot \frac{M N - M E}{M N}\).
- Vì \(M N - M E = M D\), nên \(P G = M P \cdot \frac{M D}{M N}\).
- Kiểm tra tỉ lệ \(\frac{P G}{P M}\):
- Thay biểu thức của \(P G\) vào tỉ lệ \(\frac{P G}{P M}\):\(\frac{P G}{P M} = \frac{M P \cdot \frac{M D}{M N}}{M P} = \frac{M D}{M N}\)
- Kết luận:
- Ta có \(\frac{P I}{P N} = \frac{P G}{P M}\) (từ bước 4).
- Ta vừa chứng minh được \(\frac{P G}{P M} = \frac{M D}{M N}\) (từ bước 7).
- Do đó, \(\frac{P I}{P N} = \frac{M D}{M N}\).
- Nhân cả hai vế với \(N P\), ta được \(P I = N P \cdot \frac{M D}{M N}\).
- Mà ta đã có \(D F = N P \cdot \frac{M D}{M N}\) (từ bước 1).
- Vì vậy, \(D F = I P\).
ta sẽ chứng minh rằng DF = IP với các điều kiện sau :
-tam giác MNP
-trên cạnh MN, lấy các điểm D và E sao cho MD=NE
-qua D và E , vẽ các đường thẳng song song với NP ,cắt MP tại F và M tương ứng
-từ G , kẻ đường thẳng GI // MN , cắt NP tại I

a,xét tam giác ABC có MA=MB
NA=NC
Nên MN // BC Hay MI // BP; NI //PC
Xét tam giác ABP có MI // BP; NA=NB Nên MI sẽ đi qua trung điểm AP hay AI=IP(T/C đường trung bình của tam giác)
b, ta có IM là đường trung bình của tam giác ABP (theo CM trên )
\(\Rightarrow MI=\frac{1}{2}BP\)(1)
ta có IN là đường trung bình của tam giác APC (vì AN=AC; IN//PC)
\(\Rightarrow IN=\frac{1}{2}BC\) (2)
Mà BP=PC ( do p là trung điểm của BC)
từ (1);(2);(3) suy ra MI=IN
c, ta có PABC=AB+BC+AC=54 (cm) (P là chu vi bạn nhé)
ta có NP =\(\frac{1}{2}AB\)do NA=NC;PC=PB nên NP là đường trung bình của tam giác ABC
tương tự ta có \(MN=\frac{1}{2}BC\)và \(MP=\frac{1}{2}AC\)
mặt khác PMNP=MN+NP+MP=\(\frac{1}{2}BC+\frac{1}{2}AB+\frac{1}{2}AC\)=\(\frac{1}{2}\left(BC+AB+AC\right)\)=\(\frac{1}{2}.54=27\)
Vậy chu vi tam giác MNP là 27cm