Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
hai đường trung tuyến đã cho đều không phải là đường trung tuyến xuất phát từ A vì tọa độ của A không thỏa mãn các phương trình của chúng .
đặc BM : \(2x-y+1=0\) và CN : \(x+y-4=0\) là 2 trung tuyến của tam giác ABC
đặc B\(\left(x;y\right)\) , ta có N \(\left(\dfrac{x-2}{2};\dfrac{y+3}{2}\right)\) và \(\left\{{}\begin{matrix}B\in BM\\N\in CN\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x-y+1=0\\\dfrac{x-2}{2}+\dfrac{y+3}{2}-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=-1\\x+y=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)
vậy phương trình đường thẳng chứa cạnh AB là : \(2x-4y+16=0\) \(\Leftrightarrow x-2y+8=0\)
tương tự ta có phương trình đường thẳng chứa cạnh AC là : \(2x+5y-11=0\) phương trình đường thẳng chứa cạnh BC là : \(4x+y-13=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Phương trình tổng quát \(\Delta\):
\(\dfrac{x-2}{2}=\dfrac{y-3}{1}\)=> x-2y+4=0
a. Vì M \(\in\) \(\Delta\)=> M (2y-4;y)
Theo giả thiết, MA=5 <=> \(\sqrt{(-2y+4)^{2}+(1-y)^{2}}\)=5
<=> \(5y^2-18y-8=0\)
<=>y=4 và y=\(\dfrac{-2}{5}\)
Vậy M1(4;4) và M2(\(\dfrac{-24}{5};\dfrac{-2}{5}\))
b. Gọi I là tọa độ giao điểm của đường thẳng \(\Delta\)với đường thẳng (d): x+y+1=0
Ta có hệ phương trình:
\(\begin{cases} x-2y+4=0\\ x+y+1=0 \end{cases}\)
\(\begin{cases} x=-2\\ y=1 \end{cases}\)
=> I(-2;1) là giao điểm của đường thẳng \(\Delta\)với đường thẳng d
c. Nhận thấy, điểm A\(\notin\)\(\Delta\)
Để AM ngắn nhất <=> M là hình chiếu của A trên đường thẳng \(\Delta\)
Vì M\(\in\Delta\)=> M(2y-4;y)
Ta có: Vectơ chỉ phương của \(\overrightarrow{AM}\)là \(\overrightarrow{u}\)(2;1)
\(\overrightarrow{AM}\) (2y-4;y-1)
Vì A là hình chiếu của A trên \(\Delta\)nên \(\overrightarrow{AM}\)\(\perp\Delta\)
<=> \(\overrightarrow{AM}\)\(\perp\overrightarrow{u}\)
<=> \(\begin{matrix}\overrightarrow{AM}&\overrightarrow{u}\end{matrix}\) =0
<=> 2(2y-4)+(y-1)=0
<=> 5y-9=0
<=> y= \(\dfrac{9}{5}\)
=> B (\(\dfrac{-2}{5}\);\(\dfrac{4}{5}\))
![](https://rs.olm.vn/images/avt/0.png?1311)
AB giao AH \(\Rightarrow A=\left\{{}\begin{matrix}x-3y+11=0\\3x+7y-15=0\end{matrix}\right.\)
\(\Rightarrow A\left(-2;3\right)\)
AB giao BH \(\Rightarrow B=\left\{{}\begin{matrix}x-3y+11=0\\3x-5y+13=0\end{matrix}\right.\)
\(\Rightarrow B\left(4;5\right)\)
*\(AH\perp BC\Rightarrow BC:7x-3y+a=0\)
Mà BC đi qua B \(\Rightarrow7\times4-3\times5+c=0\Rightarrow c=-13\)
BC: \(7x-3y-13=0\)
*\(BH\perp AC\Rightarrow AC:5x+3y+c=0\)
Mà AC đi qua A \(\Rightarrow5\times\left(-2\right)+3\times3+c=0\Rightarrow c=1\)
AC: \(5x+3y+1=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 3:
Đường tròn tâm \(I\left(1;2\right)\) bán kính \(R=\sqrt{2}\)
Xét đường thẳng d có pt: \(x+y-T=0\)
Để (d) và (C) có điểm chung M
\(\Leftrightarrow d\left(I;d\right)\le R\)
\(\Leftrightarrow\frac{\left|1+2-T\right|}{\sqrt{1^2+1}^2}\le\sqrt{2}\)
\(\Leftrightarrow\left|T-3\right|\le2\Rightarrow T\le5\)
\(\Rightarrow T_{max}=5\) khi (d) tiếp xúc (P)
Giải hệ \(\left\{{}\begin{matrix}x^2+y^2-2x-4y+3=0\\x+y-5=0\end{matrix}\right.\) ta được \(M\left(2;3\right)\)
Câu 1:
Gọi \(C\left(1;0\right)\Rightarrow OC=1;OA=4\)
Với M là điểm bất kì thuộc (C) \(\Rightarrow OM=R=2\)
Xét hai tam giác OCM và OMA có:
\(\widehat{MOC}\) chung
\(\frac{OC}{OM}=\frac{OM}{OA}=\frac{1}{2}\)
\(\Rightarrow\Delta OCM\sim\Delta OMA\Rightarrow\frac{AM}{CM}=\frac{OM}{OC}=2\Rightarrow AM=2CM\)
\(\Rightarrow P=MA+2MB=2CM+2MB=2\left(BM+CM\right)\ge2BC\)
\(\Rightarrow P_{min}=2BC\) khi M;B;C thẳng hàng hay M là giao điểm của đoạn thẳng BC và (C)
\(\overrightarrow{CB}=\left(2;4\right)=2\left(1;2\right)\Rightarrow\) phương trình BC có dạng: \(\left\{{}\begin{matrix}x=1+t\\y=2t\end{matrix}\right.\)
Tọa độ M thỏa mãn:
\(\left(1+t\right)^2+\left(2t\right)^2=4\)
Bạn tự giải nốt (chỉ lấy nghiệm M nằm giữa B và C)
Câu 2: hoàn toàn tương tự câu 1, gọi \(C\left(0;1\right)\Rightarrow\frac{OC}{OM}=\frac{OM}{OA}=\frac{1}{3}\Rightarrow...\)
M N I (d) H
gọi M,N là hai điểm cắt đg tròn tâm I
kẻ IH vuông góc với MN ,theo đề bài ta có MN =6 => MH=3
độ dài từ tâm I đến (d) =\(\dfrac{\left|2.3-5.-1+18\right|}{\sqrt{2^2+\left(-5\right)^2}}=\sqrt{29}\)
Áp dụng pytago vào tam giác vuông IMH ta có
\(IM=\sqrt{IH^2+MH^2}=\sqrt{38}\)
vậy pt đg tròn là \(\left(x-3\right)^2+\left(y+1\right)^2=\left(\sqrt{38}\right)^2\)( tới đây bạn tự khai triển ra nha
b ) cách làm tương tự
2 .
I N M H P
MN max khi nó là đường kính > nó phải đi qua điểm I
\(\overrightarrow{uIA}=\left(4;-2\right)=>n\overrightarrow{IA}=\left(2;4\right)\)
ptđt \(\Delta:2\left(x-3\right)+4\left(y-0\right)=0\)
MN min
ta có MN=2HM
trg tam giác vuông IHMtheo pytago ta có \(HM=\sqrt{IA^2-IH^2}\)có IA là bán kính ( cố định ) => IH max thì MN min
lại xét tam giác IHP trong tam giác IHP thì có IP là cạch huyền mà trg tam giác cạc huyền là cạch lớn nhất nên IH max khi điểm H trùng với điểm P .
vậy toạ độ A trùng với P nên \(u\overrightarrow{IP}=\left(4;-2\right)=n\overrightarrow{\Delta}\)
ptđt là \(4\left(x-3\right)-2\left(y-0\right)=0\)
mình trình bày hơi tệ bạn thông cảm nha !