Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi a, b, c,d lần lượt là số tiền góp của khối 6 , 7, 8, 9.
Theo đề, ta có: \(\frac{a}{5}=\frac{b}{7}=\frac{c}{9}=\frac{d}{3}\)và \(c-b=600000\)
Áp dụng tính chất của dãy tỉ số bằng nhau,
ta có: \(\frac{a}{5}=\frac{b}{7}=\frac{c}{9}=\frac{d}{3}=\frac{c-a}{9-7}=\frac{600000}{2}=300000\)
\(\Rightarrow\frac{a}{5}=300000\Rightarrow a=5.300000=1500000\)
\(\Rightarrow\frac{b}{7}=300000\Rightarrow b=7.300000=2100000\)
\(\Rightarrow\frac{c}{9}=300000\Rightarrow c=9.300000=2700000\)
\(\Rightarrow\frac{d}{3}=300000\Rightarrow d=3.300000=900000\)
Vậy số tiền khối 6 góp được là : 1500000 đồng
số tiền khối 7 góp được là : 2100000 đồng
số tiền khối 8 góp được là : 2700000 đồng
số tiền khối 9 góp được là : 900000 đồng
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Gọi số tiền ủng hộ của 3 bạn Bắc, Trung, Nam lần lượt là $a,b,c$. Theo bài ra ta có:
$a+b+c=120$ (nghìn đồng)
$\frac{a}{3}=\frac{b}{4}=\frac{c}{5}$
Áp dụng TCDTSBN:
$\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{120}{12}=10$
$\Rightarrow a=10.3=30; b=4.10=40; c=5.10=50$ (nghìn đồng)
Tham khảo
Gọi ba bạn Bắc, Trunng, Nam ủng hộ tất cả 120 nghìn đồng là x,y,z ∈ N* và x,y,z < 120000 (đơn vị đồng)
Ap dụng tính chất dãy tỉ số bằng nhau ta có:
X/3 = Y/4 = Z/5 = X + Y + Z/3 + 4 + 5 =120000/12 = 10000
⇒ X = 10000.3 = 30000 (đồng)
Y = 10000.4 = 40000 (đồng)
Z = 10000.5 = 50000 (đồng)
Vậy mỗi bạn ủng hộ lần lượt 30000, 40000 và 50000 đồng
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số tiền quyên góp của ba lớp 7A1, 7A2, 7A3 lần lượt là \(a,b,c\)(nghìn đồng) \(a,b,c\inℕ^∗\).
Vì số tiền quyên góp của ba lớp lần lượt tỉ lệ với \(4,5,6\)nên \(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\).
Tổng số tiền quyên góp của hai lớp 7A1 và 7A2 nhiều hơn số tiền của lớp 7A3 là \(480\)nghìn đồng nên \(a+b-c=480\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=\frac{a+b-c}{4+5-6}=\frac{480}{3}=160\)
\(\Leftrightarrow\hept{\begin{cases}a=160.4=640\\b=160.5=800\\c=160.6=960\end{cases}}\).
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số tiền mỗi lớp đã quyên góp được lần lượt là :
x ; y ; z ( nghìn đồng ; x,y,z > 0 )
Số tiền quyên góp được của các lớp 7A, 7B, 7C lần lượt tỉ lệ với 3; 4; 5
=> x,y,z tỉ lệ thuận 3,4,5 => \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\left(1\right)\)
Tổng số tiền quyên góp được là 840 nghìn đồng=> x + y + z = 840 (2)
Từ (1) và (2) áp dụng tính chất dãy tỉ số bằng nhau, có :
\(\dfrac{x}{3}+\dfrac{y}{4}+\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{840}{12}=70\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=70\times3=210\\\dfrac{y}{4}=70\times4=280\\\dfrac{z}{5}=70\times5=350\end{matrix}\right.\) ( nghìn đồng )
Vậy...
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{5}=\dfrac{b}{6}=\dfrac{c}{9}=\dfrac{b-a}{6-5}=35000\)
Do đó: a=175000; b=210000; c=315000
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số tiền 7A,7B,7C lần lượt là a,b,c(đồng;a,b,c>0)
Áp dụng tc dtsbn:
\(\dfrac{a}{5}=\dfrac{b}{6}=\dfrac{c}{9}=\dfrac{b-a}{6-5}=\dfrac{35000}{1}=35000\\ \Rightarrow\left\{{}\begin{matrix}a=175000\\b=210000\\c=315000\end{matrix}\right.\)
Vậy...
Gọi số tiền quyên góp của 3 lớp 7A, 7B, 7C lần lượt là a,b,ca,b,c.
KHi đó ta có
a5=b6=c9a5=b6=c9
và b−a=35.000b−a=35.000
Áp dụng tính chất dãy tỉ số bằng nhau ta có
a5=b6=c9=b−a6−5=35.0001=35.000a5=b6=c9=b−a6−5=35.0001=35.000
Vậy số tiền quyên góp của lớp 7A là: 35.000×5=175.00035.000×5=175.000 (đ)
Số tiền quyên góp của lớp 7B là: 35.000×6=210.00035.000×6=210.000 (đ)
Số tiền quyên góp của lớp 7C là: 35.000×9=315.00035.000×9=315.000 (đ)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c}{3+5+7}=\dfrac{105\cdot10^6}{15}=7\cdot10^6\)
Do đó: \(\left\{{}\begin{matrix}a=21000000\left(đồng\right)\\b=35000000\left(đồng\right)\\c=49000000\left(đồng\right)\end{matrix}\right.\)