Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số quyển vở của An, Tâm,Bình lần lượt là a(quyển),b(quyển),c(quyển)
(Điều kiện: \(a,b,c\in Z^+\))
Số vở còn lại của An là \(a\cdot\dfrac{1}{2}=\dfrac{1}{2}a\left(quyển\right)\)
Số vở còn lại của Tâm là: \(b\left(1-\dfrac{1}{3}\right)=\dfrac{2}{3}b\left(quyển\right)\)
Số vở còn lại của Bình là \(c\left(1-\dfrac{1}{4}\right)=\dfrac{3}{4}c\left(quyển\right)\)
Tổng số vở của ba bạn là 58 quyển nên a+b+c=58
Theo đề, ta có: \(\dfrac{1}{2}a=\dfrac{2}{3}b=\dfrac{3}{4}c\)
=>\(6a=8b=9c\)
=>\(\dfrac{6a}{72}=\dfrac{8b}{72}=\dfrac{9c}{72}\)
=>\(\dfrac{a}{12}=\dfrac{b}{9}=\dfrac{c}{8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{12}=\dfrac{b}{9}=\dfrac{c}{8}=\dfrac{a+b+c}{12+9+8}=\dfrac{58}{29}=2\)
=>\(a=2\cdot12=24;b=2\cdot9=18;c=2\cdot8=16\)
Vậy: An có 24 quyển vở, Tâm có 18 quyển vở; Bình có 16 quyển vở
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài giải:
Đổi 40% = 2/5.
Nếu lấy 2/5 số vở của Toán chia đều cho Tuổi và Thơ thì mỗi bạn Tuổi hay Thơ đều được thêm 2/5: 2 = 1/5 (số vở của Toán)
Số vở còn lại của Toán sau khi cho là:
1 - 2/5 = 3/5 (số vở của Toán)
Do đó lúc đầu Tuổi hay Thơ có số vở là:
3/5 - 1/5 = 2/5 (số vở của Toán)
Tổng số vở của Tuổi và Thơ lúc đầu là:
2/5 x 2 = 4/5 (số vở của Toán)
Mặt khác theo đề bài nếu Toán bớt đi 5 quyển thì số vở của Toán bằng tổng số vở của Tuổi và Thơ, do đó 5 quyển ứng với: 1 - 4/5 = 1/5 (số vở của Toán)
Số vở của Toán là: 5: 1/5 = 25 (quyển)
Số vở của Tuổi hay Thơ là: 25 x 2/5 = 10 (quyển)
Đổi 40% = 2/5. Nếu lấy 2/5 số vở của Toán chia đều cho Tuổi và Thơ thì mỗi bạn Tuổi hay Thơ đều được thêm 2/5 : 2 = 1/5 (số vở của Toán) Số vở còn lại của Toán sau khi cho là : 1 - 2/5 = 3/5 (số vở của Toán) Do đó lúc đầu Tuổi hay Thơ có số vở là : 3/5 - 1/5 = 2/5 (số vở của Toán) Tổng số vở của Tuổi và Thơ lúc đầu là : 2/5 x 2 = 4/5 (số vở của Toán) Mặt khác theo đề bài nếu Toán bớt đi 5 quyển thì số vở của Toán bằng tổng số vở của Tuổi và Thơ, do đó 5 quyển ứng với : 1 - 4/5 = 1/5 (số vở của Toán) Số vở của Toán là : 5 : 1/5 = 25 (quyển) Số vở của Tuổi hay Thơ là : 25 x 2/5 = 10 (quyển).
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số quyển vở mà An, bình, Cường nhận lần lượt là a,b,c
Theo đề, ta có: a/3=b/4=c/5 và a+b+c=48
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{48}{12}=4\)
=>a=12; b=16; c=20
Gọi x (quyển), y (quyển), z (quyển) lần lượt là số quyển vở của An, Bình, Cường nhận được (x, y, z \(\in\) N*)
Do số quyển vở của An, Bình, Cường tỉ lệ thuận với 3; 4; 5 nên:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Do tổng số quyển vở là 48 nên:
\(x+y+z=48\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{48}{12}=4\)
\(\dfrac{x}{3}=4\Rightarrow x=4.3=12\)
\(\dfrac{y}{4}=4\Rightarrow y=4.4=16\)
\(\dfrac{z}{5}=4\Rightarrow z=4.5=20\)
Vậy An nhận được 12 quyển vở
Bình nhận được 16 quyển vở
Cường nhận được 20 quyển vở
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi a,b,c(vở) lần lượt là số quyển vở mà cô giáo thưởng cho ba bạn Bình, An và Tâm(Điều kiện: a,b,c>0 và a,b,c∈N+)
Vì tổng số quyển vở cô giáo thưởng là 31 quyển nên a+b+c=31(quyển)
Vì số quyển vở tỉ lệ nghịch với số điểm kém nên
7a=3b=c
hay \(\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{1}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{1}=\dfrac{a+b+c}{\dfrac{1}{7}+\dfrac{1}{3}+1}=\dfrac{31}{\dfrac{31}{21}}=31\cdot\dfrac{21}{31}=21\)
Do đó:
\(\left\{{}\begin{matrix}7a=21\\3b=21\\c=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\left(nhận\right)\\b=7\left(nhận\right)\\c=21\left(nhận\right)\end{matrix}\right.\)
Vậy: Số quyển vở cô thưởng cho ba bạn Bình, An và Tâm lần lượt là 3 quyển, 7 quyển và 21 quyển
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt số quyển vở của ba bạn Tuấn. Lâm, Thái là a ; b ; c
Theo giả thiết, ta có : \(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có : \(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{2+4+5}=\frac{44}{11}=4\)
\(\Rightarrow a=2\times4=8\) Vậy Tuấn có 8 quyển vở
\(\Rightarrow b=4.4=16\) Lâm có 16 quyển vở
\(\Rightarrow c=2.10=20\) Thái có 20 quyển vở
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số vở của mỗi lớp lần lượt là a, a, c (a, b, c thuộc N*)
Theo đề bài ta có: a/8=b/7=c/10 và c - 1 = 28 (quyển)
Aps dụng tính chất cua dãy tỉ số bằng nhau, ta có: a/8=b/7=c/10=(c-a)/(10-8)=28/2=14
+)a/8=14 =>a = 112
+) b/7=14 =>b = 98
+) c/10=14=>c = 140
Vậy số vở của 3 lớp 7A, 7B, 7C lần lượt là 112,98,140 quyển.
Số vở sau khi chia của mỗi bạn là:
45 : 3 = 15 (cuốn)
An lúc này còn:
100% - 40% = 60% lượng vở ban đầu
Vậy số vở ban đầu của An là:
15 : 60% = 25 (cuốn)
Số vở Bình và Tâm có là:
45 - 25 = 20 (cuốn)
Vì sau khi chia một lượng vở bằng nhau Bình và Tâm vẫn bằng nhau nên lượng vở ban đầu của Bình và Tâm là bằng nhau.
=> B và C mỗi người có 20 : 2 = 10 (cuốn)
Vậy số vở ban đầu của An là 25 cuốn, Bình là 10 cuốn và Tâm là 10 cuốn
An 25 cuốn
Bình 10 cuốn
Tâm 10 cuốn