Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bị tự tin quá khả năng nhẩm mồm, sai em xin lỗi ...
a, Ta có \(P\left(x\right)=8x^3+2x^2-3x-3x^3+10-x-2x^2-3\)
\(=5x^3-4x-7\)
\(Q\left(x\right)=9x^3-4x^2+2x-3+2x+3x^2+4x^3-2\)
\(=13x^3-x^2+4x-5\)
b, Ta có : \(P\left(-\frac{1}{2}\right)=5.\left(-\frac{1}{2}\right)^3-4.\left(-\frac{1}{2}\right)-7=-\frac{45}{8}\)
c , \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(5x^3-4x-7+13x^3-x^2+4x-5=18x^3-x^2-12\)
\(N\left(x\right)=P\left(x\right)-Q\left(x\right)\)
\(5x^3-4x-7-13x^3+x^2-4x+5=-8x^3-8x-2+x^2\)
d, Đặt \(5x^3-4x-7=0\)( vô nghiệm )
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(f\left(x\right)=8x^2-6x-2=0\)
\(\Leftrightarrow8x^2-8x+2x-2=0\)
\(\Leftrightarrow8x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(8x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}8x+2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{4}\\x=1\end{cases}}\)
Vậy \(x\in\left\{\frac{-1}{4};1\right\}\)
b) \(g\left(x\right)=5x^2-6x+1=0\)
\(\Leftrightarrow5x^2-5x-x+1=0\)
\(\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=1\end{cases}}\)
Vậy \(x\in\left\{\frac{1}{5};1\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(8x^3-18x^2+x+6\)
\(=8x^3-16x^2-2x^2+4x-3x+6\)
\(=8x^2\left(x-2\right)-2x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(8x^2-2x-3\right)\)
\(=\left(x-2\right)\left(8x^2-6x+4x-3\right)\)
\(=\left(x-2\right)\left[2x\left(4x-3\right)+\left(4x-3\right)\right]\)
\(=\left(x-2\right)\left(2x+1\right)\left(4x-3\right)\)
=> g(x) có 3 nghiệm là
x-2=0 <=> x=2
2x+1=0 <=> x=-1/2
4x-3=0 <=> x=3/4
vậy đa thức g(x) có nghiệm là x={2;-1/2;3/4}
b) tự làm đi (mk ko bt làm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: a+b+c+d=0
Suy ra f(1)= a.1^3+b.1^2+c.1+d=a+b+c+d=.0
Vậy x=1 là một nghiệm của f(x)
b) Ta có: a+c=b+d => -a+b-c+d=0
Suy ra f(-1)= a.(-1)^3+b.(-1)^2+c.(-1)+d=-a+b-c+d=0
Vậy x=-1 là một nghiệm của f(x)
![](https://rs.olm.vn/images/avt/0.png?1311)
2 /
Cho f(x) là một đa thức thỏa mãn thì : 3 . f(x) + 2.f(1-x) = 2x + 9
f(2) = ??????
3/
Min của a2 + 4b2 - 10a
![](https://rs.olm.vn/images/avt/0.png?1311)
Do đa thức có nghiệm nên ta gọi k là một ngiệm của đa thức đó
Do P(x) là đa thức bậc ba nên \(P\left(x\right)=\left(x-k\right)\left(x^2+mx+n\right)\)
\(=x^3+mx^2+xn-kx^2-kmx-kn\)
\(=x^3+\left(m-k\right)x^2+\left(n-km\right)x-kn\)
Đồng nhất hệ số, ta được: \(\hept{\begin{cases}m-k=a\\n-km=b\\-kn=c\end{cases}}\)
Thay \(\hept{\begin{cases}m-k=a\\n-km=b\\-kn=c\end{cases}}\)vào hệ thức \(a+2b+4c=-\frac{1}{2}\),ta được:
\(\left(m-k\right)+2\left(n-km\right)-4kn=-\frac{1}{2}\)
\(\Leftrightarrow m-k+2n-2km-4kn=-\frac{1}{2}\)
\(\Leftrightarrow k\left(-1-2m-4n\right)+\left(m+2n\right)=-\frac{1}{2}\)
\(\Leftrightarrow2k\left(-1-2m-4n\right)+2\left(m+2n\right)=-1\)
\(\Leftrightarrow2k\left(-1-2m-4n\right)=\left(-1-2m-4n\right)\)
\(\Rightarrow2k=1\Rightarrow k=\frac{1}{2}\)
Vậy 1 nghiệm của đa thức là \(\frac{1}{2}\)
b) Vì \(\left|a\right|=\left|-a\right|\)\(\Rightarrow\)\(\left|x-2020\right|=\left|2020-x\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)biểu thức P(x), ta có:
\(\left|2020-x\right|+\left|x+2021\right|\ge\left|2020-x+x+2021\right|=4041\)
\(\Rightarrow\)\(P\left(x\right)\ge4041\)
Dấu "=" xảy ra khi và chỉ khi: \(\left(2020-x\right)\left(x+2021\right)>0\)
\(\Leftrightarrow-2021< x< 2020\)
Vậy \(P\left(x\right)_{min}=4041\)\(\Leftrightarrow\)\(-2021< x< 2020\)
a,Thay x=1 là nghiệm của đa thức P(x)
Ta có:ax2+bx+c=0
a.12+b.1+c=0
a+b+c=0
=>x=1 là nghiệm của P(x) (đpcm)