Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lớp 8 thì bài này hơi phức tạp, lớp 9 sử dụng delta kẹp biến sẽ dễ hơn
Hướng dẫn 1 câu, câu sau bạn tự làm nhé:
\(\left(2x^2-xy-y^2\right)+7x+2y-7=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x+y\right)+7x+2y-7=0\)
(Đến đây ta cần chuyển về dạng \(XY+a.X+b.Y+...\) để đưa về pt nghiệm nguyên quen thuộc.
Do đó ta cần phân tách \(7x+2y\) về dạng \(a\left(x-y\right)+b\left(2x+y\right)\)
\(7x+2y=a\left(x-y\right)+b\left(2x+y\right)\)
\(\Leftrightarrow7x+2y=\left(a+2b\right)x+\left(-a+b\right)y\)
Đồng nhất hệ số 2 vế: \(\left\{{}\begin{matrix}a+2b=7\\-a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=3\end{matrix}\right.\)
Do đó ta tách được như dưới đây, toàn bộ phần tách trên làm ở nháp):
\(\Leftrightarrow\left(x-y\right)\left(2x+y\right)+\left(x-y\right)+3\left(2x+y\right)-7=0\)
(Dạng cơ bản \(XY+X+3Y-7=0\) rồi)
\(\Leftrightarrow\left(x-y\right)\left(2x+y\right)+\left(x-y\right)+3\left(2x+y\right)+3-10=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x+y+1\right)+3\left(2x+y+1\right)=10\)
\(\Leftrightarrow\left(x-y+3\right)\left(2x+y+1\right)=10\)
Đến đây thì chỉ cần lập bảng ước số là xong
Làm bằng cách lớp 9 như nào vậy anh . Anh hướng dẫn e trước năm sau đỡ phải hỏi lại :D

Bài giải:
a) x2 – xy + x – y = (x2 – xy) + (x - y)
= x(x - y) + (x -y)
= (x - y)(x + 1)
b) xz + yz – 5(x + y) = z(x + y) - 5(x + y)
= (x + y)(z - 5)
c) 3x2 – 3xy – 5x + 5y = (3x2 – 3xy) - (5x - 5y)
= 3x(x - y) -5(x - y) = (x - y)(3x - 5).
\(a) x^2 - xy+x-y\) \(= (x^2 - xy) + ( x- y) \)
\(=x(x-y) + (x-y)\)
\(= (x-y) (x+1)\)
\(b) xz + yz - 5(x+y)\) \(= (xz + yz) - 5(x+y)\)
\(= z(x+y) - 5(x+y)\)
\(= (x+y) (z-5)\)
\(c) 3x^2 - 3xy - 5x +5y = (3x^2-3xy) - (5x-5y)\)
\(= 3x(x-y) - 5(x-y)\)
\(= (x-y)(3x-5)\)

bài này là phân tích đa thức thành nhân tử sao
a) x2 -xy+x-y
= ( x2-xy) +(x-y)
= x (x-y) +(x-y)
= (x-y) (x+1)
b) xz+yz-5( x+y)
= ( xz+yz)-5(x+y)
= z(x+y)-5(x+y)
= (x+y) (z-5)
c) 3x2-3xy-5x+5y
= ( 3x2 -3xy)-(5x+5y)
= 3x(x-y) - 5(x-y)
= (x-y) (3x-5)

a) \(\dfrac{3x-2}{2xy}+\dfrac{7x+2}{2xy}\)
\(=\dfrac{\left(3x-2\right)+\left(7x+2\right)}{2xy}\)
\(=\dfrac{3x-2+7x+2}{2xy}\)
\(=\dfrac{10x}{2xy}\)
\(=\dfrac{5}{y}\)
b) \(\dfrac{5x+y^2}{x^2y}+\dfrac{x^2-5y}{xy^2}\) MTC: \(x^2y^2\)
\(=\dfrac{y\left(5x+y^2\right)}{x^2y^2}+\dfrac{x\left(x^2-5y\right)}{x^2y^2}\)
\(=\dfrac{y\left(5x+y^2\right)+x\left(x^2-5y\right)}{x^2y^2}\)
\(=\dfrac{5xy+y^3+x^3-5xy}{x^2y^2}\)
\(=\dfrac{y^3+x^3}{x^2y^2}\)
c) \(\dfrac{3x-2}{2xy}-\dfrac{7x-y}{2xy}\)
\(=\dfrac{\left(3x-2\right)-\left(7x-y\right)}{2xy}\)
\(=\dfrac{3x-2-7x+y}{2xy}\)
\(=\dfrac{-2-4x+y}{2xy}\)
d) \(\dfrac{5x+y^2}{x^2y}-\dfrac{5y-x^2}{xy^2}\) MTC: \(x^2y^2\)
\(=\dfrac{y\left(5x+y^2\right)}{x^2y^2}-\dfrac{x\left(5y-x^2\right)}{x^2y^2}\)
\(=\dfrac{y\left(5x+y^2\right)-x\left(5y-x^2\right)}{x^2y^2}\)
\(=\dfrac{5xy+y^3-5xy+x^3}{x^2y^2}\)
\(=\dfrac{y^3+x^3}{x^2y^2}\)
e) \(\dfrac{16xy}{3x-1}.\dfrac{3-9x}{12xy^3}\)
\(=\dfrac{16xy\left(3-9x\right)}{12xy^3\left(3x-1\right)}\)
\(=\dfrac{4\left(3-9x\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-4\left(9x-3\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-4.3\left(3x-1\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-12}{3y^2}\)
\(=\dfrac{-4}{y^2}\)
f) \(\dfrac{8xy}{3x-1}:\dfrac{12xy^3}{5-15x}\)
\(=\dfrac{8xy}{3x-1}.\dfrac{5-15x}{12xy^3}\)
\(=\dfrac{8xy\left(5-15x\right)}{12xy^3\left(3x-1\right)}\)
\(=\dfrac{2\left(5-15x\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-2\left(15x-5\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-2.5\left(3x-1\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-10}{3y^2}\)
Cho $x=-1; y=-2$ thì $B=4$ là số dương. Bạn xem lại đề.