Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm

Vẽ hình: (các đoạn thẳng bằng nhau đã kí hiệu trong hình)
A B C D M H X a) Xét ΔABM và ΔDCM có:
AM = MD (gt)
AM = BM (M là trung điểm của BC)
Góc AMB = Góc CMD (đối đỉnh)
=> ΔABM = ΔDCM (c.g.c) (đpcm)
b) Vì ΔABM = ΔDCM (cmt) => Góc BAM = góc CDM (2 góc tương ứng)
Vì Góc BAM = góc CDM mà 2 góc này ở vị trí so le trong => AB//CD (đpcm)
c) Vì Ax//BC => Góc ACB = góc CAH (2 góc so le trong)
Xét ΔABC và ΔAHC có:
AH = BC (gt)
Góc ACB = góc CAH (cmt)
Cạnh chung AC
=> ΔABC = ΔAHC (c.g.c)
Vì ΔABC = ΔAHC => Góc ACH = góc BAC (2 góc tương ứng)
Vì Góc ACH = góc BAC mà 2 góc này ở vị trí so le trong => CH//AB
Vì DC//AB và CH//AB mà 2 cạnh này cùng đi qua điểm C => DC trùng CH (tiên đề Ơ-clit về đường thẳng song song)
Vì DC trùng CH => 3 điểm H, C, D thẳng hàng (đpcm)

tu ve hinh :
a, xet tamgiac MBA va tamgiac MDC co :
goc BMA = goc DMC (doi dinh)
BM = CM do M la trung diem cua BC (GT)
MA = MD (GT)
=> tamgiac MBA = tamgiac MDC (c - g - c)
=> AB = DC (dn)
tamgiac MBA = tamgiac MDC => goc CDM = goc MAB ma 2 goc nay slt
=> AB // CD (dh)
b, co tamgiac ABC vuong tai A => AB | AC (dn) ; AB // DC (cau a)
=> AC | DC (dl) => tamgiac ACD vuong tai C (dn)
tamgiac MBA = tamgiac MDC => AB = CD (dn)
goc BAC = goc DCA = 90o do tamgiac ABC vuong tai A va tamgiac DCA vuong tai C
xet tamgiac ACB va tamgiac CAD co AC chung
=> tamgiac ACB = tamgiac CAD (2cgv)
=> BC = AD (dn)
M la trung diem cua BC => M la trung diem cua AD => AM = AD/2 (tc)
=> AM = BC/2

a: Xét ΔMAB và ΔMDC có
MA=MD
\(\hat{AMB}=\hat{DMC}\) (hai góc đối đỉnh)
MB=MC
Do đó: ΔAMB=ΔDMC
=>AB=DC
ΔMAB=ΔMDC
=>\(\hat{MAB}=\hat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//DC
b: Xét ΔMBA và ΔMCD có
\(\hat{MBA}=\hat{MCD}\) (hai góc so le trong, AB//CD)
MB=MC
\(\hat{BMA}=\hat{CMD}\) (hai góc đối đỉnh)
Do đó: ΔMBA=ΔMCD
=>MA=MD
=>M là trung điểm của AD
Giải:
Câu a:
Xét tứ giác ABCD có:
AM = MD (gt)
MB = MC (gt)
⇒ Tứ giác ABCD là hình bình hành(tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường thì tứ giác đó là hình bình hành)
Tứ giác ABCD là hình bình hành(cmt)
⇒ AB song song và bằng CD (đpcm)

a) Xét ∆ vuông ABH ta có :
BH < AB ( trong ∆ vuông cạnh góc vuông nhỏ hơn cạnh huyền)
Xét ∆ vuông AHC ta có :
HC < AC (...)
=> BH < AC
b) Vì AH = HE
=> H là trung điểm AE
Mà BHA = 90°
=> BH vuông góc với AE
=> BH là trung trực ∆BAE
=> ∆BAE cân tại B
a) Đường xiên AB bé hơn đường xiên AC nên hình chiếu của AB trên BC bé hơn hình chiếu của AC trên BC
\(\Rightarrow BH< CH\left(đpcm\right)\)
b) Hai tam giác vuông ABH và EBH có:
BH: cạnh chung
HE = HA (gt)
Suy ra \(\Delta ABH=\Delta EBH\left(2cgv\right)\)
\(\Rightarrow AB=EB\)(hai cạnh tương ứng)
\(\Rightarrow\Delta ABE\)cân tại B ( có hai cạnh bên bằng nhau)

Xét tam giác AMC và tam giác DMB có:
AM = DM (gt)
AMC = DMB (2 góc đối đỉnh)
MC = MB (M là trung điểm của BC)
=> Tam giác AMC và tam giác DMB (c.g.c)
=> AC = DB (2 cạnh tương ứng) mà AC = AF (gt) => DB = AF
CAM = BDM (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => CA // BD
EAF + FAC + CAB + BAE = 3600
EAF + 900 + CAB + 900 = 3600
EAF + CAB + 1800 = 3600
EAF + CAB = 3600 - 1800
EAF + CAB = 1800
mà DBA + CAB = 1800 (2 góc trong cùng phía, AC // BD)
=> EAF = DBA
Xét tam giác EAF và tam giác ABD có:
EA = AB (gt)
EAF = ABD (chứng minh trên)
AF = BD (chứng minh trên)
=> Tam giác EAF = Tam giác ABD (c.g.c)
=> EF = BD (2 cạnh tương ứng)

tự vẽ hik nhk!
a)xét tam giác AMB và tam giác DMC có:
AM= MD(gt)
góc AMB=CMD(đđ)
BM=MC(gt)
suy ra hai tam giac bang nhau
b)ta có tam giác abm =tam giac dcm
suy ra ab=cd
xet tam giacacm và tam giác cmd có
am=md
cm:cạnh chung
ac=cd(=ab)
suy ra hai tam giac bang nhau
suy ra goc acm=dcm
suy ra cb la tia pg cua acd
a) Xét tam giác ABM và tam giác DCM có:
AM = DM (gt)
BM = MC (gt)
góc BMA = góc DMC (2 góc đối đỉnh)
=> tam giác ABM = tam giác DCM (c.g.c)
b) Vì tam giác ABM = tam giác DCM (cmt)
=> góc ABM = góc DCM (2 góc tương ứng)
mà 2 góc này so le trong
=> AB//DC
c) Xét tam giác ABM và tam giác ACM có:
AB = AC (gt)
BM = MC (gt
AM là cạnh chung
=> tam giác ABM bằng tam giác ACM (c.c.c)
=> góc BMA bằng góc AMC
=> góc BMA = góc AMC = 1/2(góc BMA + góc AMC)
mà góc BMA + góc AMC = 180o (2 góc kề bù)
=> góc BMA = góc AMC = 1/2.180o = 90o
=> AM vuông góc với BC
a. Hình vẽ (1 điểm)
Xét ΔABM và ΔBCM có:
BM = MC
∠(AMB) = ∠(BMC)
AM = MD
⇒ ΔABM = ΔBCM (c.g.c) (1 điểm)