K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm

15 tháng 6 2018

a) Tam giác ABC là tam giác vuông.Vì theo Py-ta-go .

a: Xét ΔABE và ΔADE có

AB=AD

\(\widehat{BAE}=\widehat{DAE}\)

AE chung

DO đó: ΔABE=ΔADE

b: Ta có: ΔABD cân tại A

mà AI là đường phân giác

nên I là trung điểm của BD

 

17 tháng 9 2019

ta có hình vẽ sau :

A B C M 7 1 24 40

a, tam giác ABC có AB2 + AC2 = 242 + 322 =1600 ;                                  

BC2 = 1600.

Vậy AB2 + AC2 = BC2.

=> tam giác ABC vuông góc tại A. 

b, áp dụng định lý Pi-ta-go vào tam giác vuông AMB, ta có :

BM2 = AB2 + AM2 = 242 + 72 = 625 => BM = \(\sqrt{625}=25\)

Mặt khác , MC = AC - AM = 32 - 7 = 25. Vậy MB = MC 

=> tam giác MBC cân tại M 

do đó \(\widehat{B_1}=\widehat{C}\)

 \(\widehat{AMB}=\widehat{B_1}+\widehat{C}\) ( tính chất góc ngoài của tam giác MCB ) hay

\(\widehat{AMB}=2\widehat{C}\)

                                                                                                                            

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: ΔAMB=ΔAMC

=>\(\hat{AMB}=\hat{AMC}\)

\(\hat{AMB}+\hat{AMC}=180^0\) (hai góc kề bù)

nên \(\hat{AMB}=\hat{AMC}=\frac{180^0}{2}=90^0\)

=>AM⊥BC tại M

c: ΔAMB=ΔAMC

=>\(\hat{MAB}=\hat{MAC}\)

Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

\(\hat{HAM}=\hat{KAM}\)

Do đó: ΔAHM=ΔAKM

d: ΔAHM=ΔAKM

=>AH=AK và MH=MK

Xét ΔMHB vuông tại H và ΔMKC vuông tại K có

MB=MC

MH=MK

Do đó: ΔMHB=ΔMKC

16 tháng 8

không bít

22 tháng 12 2016

câu a hơi kì nhỉ , theo mk thì phải là tam giác ABM = tam giác DCM chứ

22 tháng 12 2016

a) Xét \(\Delta ABM\)\(\Delta DCM\)có :

AM=DM ( gt )

BM=MC ( gt )

\(\widehat{BMA}=\widehat{DMC}\) ( 2 góc đối đỉnh )

do đó \(\Delta ABM\) = \(\Delta DCM\) ( c.g.c )

b) Vì \(\Delta ABM=\Delta DCM\)( c/m trên )

\(\Rightarrow\widehat{ABM}=\widehat{DCM}\) ( 2 góc tương ứng )

mà 2 góc này ở vị trí so le trong

nên AB // BC

 

4 tháng 7 2016

  Câu c: 
Ta có: tam giác ABE = tam giác KBE (cmt) 
=> AE = KE (2 cạnh tương ứng), mà E thuộc AK (gt) 
=> E là trung điểm của AK (t/c) 
Mà BE vuông góc với AK tại E (gt) 
=> BE là đường trung trực của đoạn AK (t/c) 
Có D thuộc BE => ED là đường trung trực của AK 
=> AD = KD 
=> tam giác ADK cân tại D (dhnb) 
=> góc KAD = góc AKD (t/c) (1) 
Có AH vuông góc với BC tại H (giả thiết) 
DK vuông góc với BC tại K (cmt) 
Từ 2 điều đó => AH // DK (do cùng vuông góc với BC) 
=> góc HAK = góc AKD (2 góc so le trong) (2) 
Từ (1) và (2) => góc KAD = góc HAK (cùng = góc AKD) 
mà tia AK nằm giữa 2 tia AH và AD 
=> AK là tia phân giác góc HAC 
Câu d: 
Có AH cắt BD tại I (gt) => I thuộc BD 
=> I thuộc trung trực của AK 
=> IA = IK (t/c) 
=> Tam giác IAK cân tại I (dhnb) 
=> góc IAK = góc IKA 
mà góc IAK = góc KAD (cmt) 
=> góc IKA = góc KAD (= góc IAK) 
mà góc IKA và góc KAD nằm ở vị trí so le trong 
=> IK // AC (dhnb 2 đường thẳng //) 

4 tháng 7 2016

cảm  ơn nhé