Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
bài 1, bạn tự làm nhé đặt chia đi bạn
bài 2
a,\(\left(x^2-2xy+y^2\right)+2\left(x-y\right)=\left(x-y\right)^2+2\left(x-y\right)=\left(x-y\right)\left(x-y+2\right)\)
\(b,=a^2-2a-5a+10=a\left(a-2\right)-5\left(a-2\right)=\left(a-2\right)\left(a-5\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^5+x^3+x^2+1=\left(x^5+x^2\right)+\left(x^3+1\right)\)
\(=x^2\left(x^3+1\right)+\left(x^3+1\right)\)
\(=\left(x^3+1\right)\left(x^2+1\right)\)
Vậy phép chia đa thức trên cho \(x^3+1\) bằng \(x^2+1\)
b) \(x^2-5x+6=x^2-2x-3x+6\)
\(=\left(x^2-2x\right)-\left(3x-6\right)\)
\(=x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(x-3\right)\)
Vậy phép chia đa thức trên cho \(x-3\) được thương là \(x-2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1, = [(x-1)^2-y^2] : (x-y-1)
= (x+y-1).(x-y-1) : (x-y-1) = x+y-1
2, x^2-x-y^2+y = (x^2-y^2)-(x-y) = (x-y).(x+y) - (x-y) = (x-y).(x+y+1)
k mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
C1
a) -7x(3x-2)=-21x^2+14x
b) 87^2+26.87+13^2=87^2+2.13.87+13^2=(87+13)^2=100^2
C2
a) (x-5)(x+5)
b)3x(x+5)-2(x+5)=(3x-2)(x+5)=0
\(\Rightarrow\left[\begin{array}{nghiempt}3x-2=0\\x+5=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{2}{3}\\x=-5\end{array}\right.\)
Vậy S={-5;2/3}
C3:
a)3x^3-2x^2+2=(x+1)(3x^2-5x-5)-3
b) Để A chia hết cho B=> x+1\(\inƯ\left(-3\right)\)
\(\Rightarrow\begin{cases}x+1=3\\x+1=-3\\x+1=1\\x+1=-1\end{cases}\)\(\Rightarrow\begin{cases}x=2\\x=-4\\x=0\\x=-2\end{cases}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)x2-xy+x-y
=x(x-y)+(x-y)
=(x+1)(x-y)
b)3x2-3xy-5x+5y
=3x(x-y)-5(x-y)
=(3x-5)(x-y)
a ) \(x^2-xy+x-y\).
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x+1\right).\)
b ) \(3x^2-3xy-5x+5y\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-5\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^8+3x^4+4\)
\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)
\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)