Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Tập xác định : D = R { 1 }.
> 0, ∀x
1.
Hàm số đồng biến trên các khoảng : (-∞ ; 1), (1 ; +∞).
b) Tập xác định : D = R { 1 }.
< 0, ∀x
1.
Hàm số nghịch biến trên các khoảng : (-∞ ; 1), (1 ; +∞).
c) Tập xác định : D = (-∞ ; -4] ∪ [5 ; +∞).
∀x ∈ (-∞ ; -4] ∪ [5 ; +∞).
Với x ∈ (-∞ ; -4) thì y’ < 0; với x ∈ (5 ; +∞) thì y’ > 0. Vậy hàm số nghịch biến trên khoảng (-∞ ; -4) và đồng biến trên khoảng (5 ; +∞).
d) Tập xác định : D = R { -3 ; 3 }.
< 0, ∀x
±3.
Hàm số nghịch biến trên các khoảng : (-∞ ; -3), (-3 ; 3), (3 ; +∞).
![](https://rs.olm.vn/images/avt/0.png?1311)
a) + cos2250 = cos(1800 + 450 ) = -cos450 =
+ sin2400 = sin(1800 + 600 ) = -sin600 =
+ cot(-150 ) = -cot150 = -tan750 = -tan(300 + 450 )
= -2 - √3
+ tan 750 = cot150= 2 + √3
b)
+ sin = sin
= sin
cos
+ cos
sin
+ cos = cos
= cos
cos
+ sin
sin
+ tan = tan(π +
) = tan
= tan
=
= 2 - √3
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét hàm số y = f(x) = tanx – x với x ∈ [0 ; ).
Ta có : y’ = - 1 ≥ 0, x ∈ [0 ;
); y’ = 0 ⇔ x = 0. Vậy hàm số luôn đồng biến trên [0 ;
).
Từ đó ∀x ∈ (0 ; ) thì f(x) > f(0) ⇔ tanx – x > tan0 – 0 = 0 hay tanx > x.
b) Xét hàm số y = g(x) = tanx – x - . với x ∈ [0 ;
).
Ta có : y’ = - 1 - x2 = 1 + tan2x - 1 - x2 = tan2x - x2
= (tanx - x)(tanx + x), ∀x ∈ [0 ; ).
Vì ∀x ∈ [0 ; ) nên tanx + x ≥ 0 và tanx - x >0 (theo câu a).
Do đó y' ≥ 0, ∀x ∈ [0 ; ).
Dễ thấy y' = 0 ⇔ x = 0. Vậy hàm số luôn đồng biến trên [0 ; ). Từ đó : ∀x ∈ [0 ;
) thì g(x) > g(0) ⇔ tanx – x -
> tan0 - 0 - 0 = 0 hay tanx > x +
.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) π < a < => sina < 0, cosa < 0, tana > 0
sin2a = 2sinacosa = 2(-0,6)(-) = 0,96
cos2a = cos2 a – sin2 a = 1 – 2sin2 a = 1 - 0,72 = 0,28
tan2a = ≈ 3,1286
b) < a < π => sina > 0, cosa < 0
sina =
sin2a = 2sinacosa = 2.
cos2a = 2cos2a - 1 = 2 - 1 = -
tan2a =
c) < a < π =>
< 2a < 2π => sin2a < 0, cos2a > 0, tan2a < 0
sin2a = - 1 = -0,75
cos2a =
tan2a = -
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Hoành độ điểm P là :
xp = OP = OM. cos α = R.cosα
Phương trình đường thẳng OM là y = tanα.x. Thể tích V của khối tròn xoay là:
b) Đặt t = cosα => t ∈ . (vì α ∈
), α = arccos t.
Ta có :
V' = 0 ⇔
hoặc (loại).
Ta có bảng biến thiên:
Từ đó suy ra V(t) lớn nhất ⇔ , khi đó :
.
![](https://rs.olm.vn/images/avt/0.png?1311)
HD: Đường tròn đã cho có phương trình x2 + y2 = 8
Từ đó ta có: y = ±
Gọi S là diện tích phần tô xám ở hình bên :
và
Vậy .
c47a4970.html#ixzz43P4gPVRT
![](https://rs.olm.vn/images/avt/0.png?1311)
Tập xác định : D = [0 ; 2]; y' = , ∀x ∈ (0 ; 2); y' = 0 ⇔ x = 1.
Bảng biến thiên :
Vậy hàm số đồng biến trên khoảng (0 ; 1) và nghịch biến trên khoảng (1 ; 2).
Bài 1. a)
Bảng biến thiên :
Hàm số đạt cực đại tại x = -3 , ycđ = y(-3) = 71
Hàm số đạt cực tiểu tại x = 2 ,
b) y’ = 4x3 + 4x = 4x(x2 + 1); y’ = 0 ⇔ x = 0.
Bảng biến thiên :
Hàm số đạt cực tiểu tại x = 0 ,
.
c) Tập xác định :![This is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program.](http://latex.codecogs.com/gif.latex?D%20%3D%5Ctextbf%7B%20R%7D%20%5Csetminus%20%5Cleft%20%5C%7B%200%20%5Cright%20%5C%7D)
Bảng biến thiên :
Hàm số đạt cực đại tại x = -1 , ycđ = y(-1) = -2 ;
Hàm số đạt cực tiểu tại x = 1 , yct = y(1) = 2.
d) Tập xác định : D = R.
y’ = 3x2(1 – x)2 + x3 . 2(1 – x)(-1) = x2 (1 – x)[3(1 – x) - 2x] = x2 (x – 1)(5x – 3) .
y’ = 0 ⇔ x = 0, x =
, x = 1.
Bảng biến thiên :
Hàm số đạt cực đại tại x =
, ycđ =
=
;
Hàm số đạt cực tiểu tại x = 1 , yct = y(1) = 0 .
e) Tập xác định : D = R.![This is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program.](http://latex.codecogs.com/gif.latex?y%27%3D%5Cfrac%7B2x-1%7D%7B2%5Csqrt%7Bx%5E%7B2%7D-x+1%7D%7D%3B%20y%27%3D0%5CLeftrightarrow%20x%3D%5Cfrac%7B1%7D%7B2%7D.)
Bảng biến thiên :
Hàm số đạt cực tiểu tại![This is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program.](http://latex.codecogs.com/gif.latex?x%3D%5Cfrac%7B1%7D%7B2%7D%2C%20y_%7B%28ct%29%7D%3Dy%5Cleft%20%28%20%5Cfrac%7B1%7D%7B2%7D%20%5Cright%20%29%3D%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7D.)
Bài 1. a)
Bảng biến thiên :
Hàm số đạt cực đại tại x = -3 , ycđ = y(-3) = 71
Hàm số đạt cực tiểu tại x = 2 ,
b) y’ = 4x3 + 4x = 4x(x2 + 1); y’ = 0 ⇔ x = 0.
Bảng biến thiên :
Hàm số đạt cực tiểu tại x = 0 ,
.
c) Tập xác định :![This is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program.](http://latex.codecogs.com/gif.latex?D%20%3D%5Ctextbf%7B%20R%7D%20%5Csetminus%20%5Cleft%20%5C%7B%200%20%5Cright%20%5C%7D)
Bảng biến thiên :
Hàm số đạt cực đại tại x = -1 , ycđ = y(-1) = -2 ;
Hàm số đạt cực tiểu tại x = 1 , yct = y(1) = 2.
d) Tập xác định : D = R.
y’ = 3x2(1 – x)2 + x3 . 2(1 – x)(-1) = x2 (1 – x)[3(1 – x) - 2x] = x2 (x – 1)(5x – 3) .
y’ = 0 ⇔ x = 0, x =
, x = 1.
Bảng biến thiên :
Hàm số đạt cực đại tại x =
, ycđ =
=
;
Hàm số đạt cực tiểu tại x = 1 , yct = y(1) = 0 .
e) Tập xác định : D = R.![This is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program.](http://latex.codecogs.com/gif.latex?y%27%3D%5Cfrac%7B2x-1%7D%7B2%5Csqrt%7Bx%5E%7B2%7D-x+1%7D%7D%3B%20y%27%3D0%5CLeftrightarrow%20x%3D%5Cfrac%7B1%7D%7B2%7D.)
Bảng biến thiên :
Hàm số đạt cực tiểu tại![This is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program.](http://latex.codecogs.com/gif.latex?x%3D%5Cfrac%7B1%7D%7B2%7D%2C%20y_%7B%28ct%29%7D%3Dy%5Cleft%20%28%20%5Cfrac%7B1%7D%7B2%7D%20%5Cright%20%29%3D%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7D.)
Xem thêm tại: http://loigiaihay.com/bai-1-trang-18-sach-sgk-giai-tich-12-c47a2683.html#ixzz44ZBz8Jsr